
vasm assembler system

Volker Barthelmann

i

Table of Contents

1 General . 1
1.1 Introduction . 1
1.2 Legal . 1
1.3 Installation . 1

2 The Assembler . 3
2.1 General Assembler Options . 3
2.2 Expressions . 4
2.3 Include Files . 5
2.4 Macros . 5
2.5 Conditional Assembly . 5
2.6 Known Problems . 5
2.7 Credits . 5
2.8 Error Messages . 5

3 Standard Syntax Module 7
3.1 Legal . 7
3.2 Additional options for this version . 7
3.3 General Syntax . 7
3.4 Directives . 8
3.5 Known Problems . 12
3.6 Error Messages . 12

4 Mot Syntax Module . 15
4.1 Legal . 15
4.2 Additional options for this version . 15
4.3 General Syntax . 15
4.4 Directives . 16
4.5 Known Problems . 21
4.6 Error Messages . 21

5 Oldstyle Syntax Module. 23
5.1 Legal . 23
5.2 Additional options for this version . 23
5.3 General Syntax . 23
5.4 Directives . 23
5.5 Known Problems . 28
5.6 Error Messages . 29

ii vasm manual

6 Simple binary output module 31
6.1 Legal . 31
6.2 Additional options for this version . 31
6.3 General. 31
6.4 Known Problems . 31
6.5 Error Messages . 31

7 Test output module . 33
7.1 Legal . 33
7.2 Additional options for this version . 33
7.3 General. 33
7.4 Restrictions . 33
7.5 Known Problems . 33
7.6 Error Messages . 33

8 ELF output module . 35
8.1 Legal . 35
8.2 Additional options for this version . 35
8.3 General. 35
8.4 Restrictions . 35
8.5 Known Problems . 35
8.6 Error Messages . 35

9 a.out output module . 37
9.1 Legal . 37
9.2 Additional options for this version . 37
9.3 General. 37
9.4 Restrictions . 37
9.5 Known Problems . 37
9.6 Error Messages . 38

10 TOS output module . 39
10.1 Legal . 39
10.2 Additional options for this version . 39
10.3 General . 39
10.4 Restrictions . 39
10.5 Known Problems . 39
10.6 Error Messages. 39

11 vobj output module. 41
11.1 Legal . 41
11.2 Additional options for this version . 41
11.3 General . 41
11.4 Restrictions . 41
11.5 Known Problems . 41
11.6 Error Messages. 41

iii

12 Amiga output module. 43
12.1 Legal . 43
12.2 Additional options for this version . 43
12.3 General . 43
12.4 Restrictions . 43
12.5 Known Problems . 44
12.6 Error Messages. 44

13 m68k cpu module. 45
13.1 Legal . 45
13.2 Additional options for this module . 45

13.2.1 CPU selections . 45
13.2.2 Optimization options . 46
13.2.3 Other options . 47

13.3 General . 47
13.4 Extensions . 47
13.5 Optimizations . 50
13.6 Known Problems . 53
13.7 Error Messages. 53

14 PowerPC cpu module . 55
14.1 Legal . 55
14.2 Additional options for this module . 55
14.3 General . 56
14.4 Extensions . 56
14.5 Optimizations . 56
14.6 Known Problems . 56
14.7 Error Messages. 56

15 c16x/st10 cpu module. 59
15.1 Legal . 59
15.2 Additional options for this module . 59
15.3 General . 59
15.4 Extensions . 59
15.5 Optimizations . 60
15.6 Known Problems . 60
15.7 Error Messages. 60

16 6502 cpu module . 61
16.1 Legal . 61
16.2 Additional options for this module . 61
16.3 General . 61
16.4 Extensions . 61
16.5 Optimizations . 61
16.6 Known Problems . 62
16.7 Error Messages. 62

iv vasm manual

17 ARM cpu module . 63
17.1 Legal . 63
17.2 Additional options for this module . 63
17.3 General . 64
17.4 Extensions . 64
17.5 Optimizations . 65
17.6 Known Problems . 65
17.7 Error Messages. 65

18 80x86 cpu module . 67
18.1 Legal . 67
18.2 Additional options for this module . 67
18.3 General . 67
18.4 Extensions . 68
18.5 Optimizations . 68
18.6 Known Problems . 68
18.7 Error Messages. 68

19 z80 cpu module. 71
19.1 Legal . 71
19.2 Additional options for this module . 71
19.3 General . 71
19.4 Extensions . 71
19.5 Optimisations . 72
19.6 Known Problems . 72
19.7 Error Messages. 72

20 Interface . 73
20.1 Introduction . 73
20.2 Building vasm . 73

20.2.1 Directory Structure . 73
20.2.2 Adapting the Makefile . 73
20.2.3 Building vasm . 74

20.3 General data structures . 75
20.3.1 Source . 75
20.3.2 Sections . 76
20.3.3 Symbols . 77
20.3.4 Atoms . 78
20.3.5 Relocations . 81
20.3.6 Errors . 82

20.4 Syntax modules . 82
20.4.1 The file ‘syntax.h’ . 82
20.4.2 The file ‘syntax.c’ . 83

20.5 CPU modules . 84
20.5.1 The file ‘cpu.h’ . 84
20.5.2 The file ‘cpu.c’ . 85

20.6 Output modules . 87

Chapter 1: General 1

1 General

1.1 Introduction

vasm is a portable and retargetable assembler able to create linkable objects in different
formats as well as absolute code. Different CPU-, syntax and output-modules are supported.
Many common directives/pseudo-opcodes are supported (depending on the syntax module)
as well as CPU-specific extensions.
The assembler supports optimizations and relaxations (e.g. choosing the shortest possible
branch instruction or addressing mode as well as converting a branch to an absolute jump
if necessary).
The concept is that you get a special vasm binary for any combination of CPU- and syntax-
module. All output modules, which make sense for the current CPU, are included in the
vasm binary and you have to make sure to choose the output file format you need (refer to
the next chapter for -F option). The default is a test output, only useful for debugging or
analyzing the output.

1.2 Legal

vasm is copyright in 2002-2009 by Volker Barthelmann.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

1.3 Installation

The vasm binaries do not need additional files, so no further installation is necessary. To use
vasm with vbcc, copy the binary to ‘vbcc/bin’ after following the installation instructions
for vbcc.
The vasm binaries are named vasm<cpu>_<syntax> with <cpu> representing the CPU-
module and <syntax> the syntax-module, e.g. vasm for PPC with the standard syntax
module is called vasmppc_std.
Sometimes the syntax-modifier may be omitted, e.g. vasmppc.

2 vasm manual

Chapter 2: The Assembler 3

2 The Assembler

This chapter describes the module-independent part of the assembler. It documents the
options and extensions which are not specific to a certain target, syntax or output driver.
Be sure to also read the chapters on the backend, syntax- and output-module you are
using. They will likely contain important additional information like data-representation
or additional options.

2.1 General Assembler Options

vasm expects the following syntax:
vasm<target>_<syntax> [options] file

The following options are supported by the machine independent part of vasm:

‘-quiet’ Do not print the copyright notice.

‘-o ofile’ Write the generated assembler output to <ofile> rather than ‘a.out’

‘-F<fmt>’ Use module <fmt> as output driver. See the chapter on output drivers for
available formats and options.

‘-D<name>[=expression]’
Defines a symbol with the name <name> and assigns the value of the expression
when given. The assigned value defaults to 1 otherwise.

‘-I<path>’
Define another include path. They are searched in the order of occurence on
the command line.

‘-w’ Hide all warning messages.

‘-x’ Show an error message, when referencing an undefined symbol. The default
behaviour is to declare this symbol as externally defined.

‘-nosym’ Strips all local symbols from the output file and doesn’t include any other
symbols than those which are required for external linkage.

‘-nowarn=<n>’
Disable warning message <n>. <n> has to be the number of a valid warning
message, otherwise an error is generated.

‘-maxerrors=<n>’
Defines the maximum number of errors to display before assembly is aborted.
When <n> is 0 then there is no limit.

‘-unnamed-sections’
Sections are no longer distinguished by their name, but only by their attributes.
This has the effect that when defining a second section with a different name
but same attributes as a first one, it will switch to the first, instead of starting
a new section.

‘-ignore-mult-inc’
When the same file is included multiple times with the same path this is silently
ignored, causing the file to be processed only once. Note that you can still
include the same file twice when using different paths to access it.

4 vasm manual

‘-nocase’ Disables case-sensitivity for everything - identifiers, directives and instructions.

‘-noesc’ No escape character sequences. This will make vasm treat the escape character
\ as any other character. Might be useful for compatibility.

‘-pic’ Try to generate position independant code. Every relocation is flagged by an
error message.

2.2 Expressions

Standard expressions are usually evaluated by the main part of vasm rather than by one of
the modules (unless this is necessary).

All expressions evaluated by the frontend are calculated in terms of target address values,
i.e. the range depends on the backend.

The operators available are similar to the ones available in C expressions and have the same
precedence and associativity as in the C language. All the standard arithmetic (+,-,*,/,%),
bitwise (&,|,^), logical (&&,|| and conditional operators (?:,!,<,>,<=,>=,==,!=) are
allowed. For compatibility also // is allowed to represent a modulo operation.

Operands are integral values of the target address type. They can either be specified as
integer constants of different bases (see the documentation on the syntax module to see how
the base is specified) or character constants. Character constants are introduced by ’ or "
and have to be terminated by the same character that started them.

Multiple characters are allowed and a constant is built according to the endianess of the
target.

Inside character contants, the following escape sequences are allowed (unless ‘-noesc’ was
specified):

\\ Produces a single \.

\b The bell character.

\f Form feed.

\n Line feed.

\r Carriage return.

\t Tabulator.

\" Produces a single ".

\’ Produces a single ’.

\e Escape character (27).

\<octal-digits>
One character with the code specified by the digits as octal value.

\x<hexadecimal-digits>
One character with the code specified by the digits as hexadecimal value.

\X<hexadecimal-digits>
Same as \x.

Chapter 2: The Assembler 5

2.3 Include Files

vasm supports include files and defining include paths. Whether this functionality is avail-
able depends on the syntax module, which has to provide the appropriate directives.

2.4 Macros

Macros are supported by vasm, but the directives for defining them have to be implemented
in the syntax module. In any case the assembler core allows up to 9 macro parameters to
be passed in the operand field. They can be referenced inside the macro by \1 to \9.
Additionally there is a special argument \0 which is set to the first qualifier (mnemonic
extension) of the macro invocation when given.
\@ inserts a unique id of the form _nnnnnn (where ’n’ is a digit between 0 and 9) per macro
invocation. Useful for defining reusable labels in a macro.

2.5 Conditional Assembly

Has to be provided completely by the syntax module.

2.6 Known Problems

Some known module-independent problems of vasm at the moment:
− None.

2.7 Credits

All those who wrote parts of the vasm distribution, made suggestions, answered my ques-
tions, tested vasm, reported errors or were otherwise involved in the development of vasm
(in descending alphabetical order, under work, not complete):
• Frank Wille
• Sebastian Pachuta
• Gunther Nikl
• Timm S. Mueller
• Gareth Morris
• Jörg van de Loo
• Miro Kropacek
• Mikael Kalms
• Tom Duin
• Karoly Balogh

2.8 Error Messages

The frontend has the following error messages:
− 1: illegal operand types
− 2: unknown mnemonic <%s>
− 3: unknown section <%s>

6 vasm manual

− 4: no current section specified
− 5: internal error %d in line %d of %s
− 6: symbol <%s> redefined
− 7: %c expected
− 9: division by zero
− 10: number or identifier expected
− 11: could not initialize %s module
− 12: multiple input files
− 13: could not open <%s> for input
− 14: could not open <%s> for output
− 15: unknown option <%s>
− 16: no input file specified
− 17: could not initialize output module <%s>
− 18: out of memory
− 19: symbol <%s> recursively defined
− 22: character constant too long
− 23: undefined local symbol
− 24: trailing garbage after option -%c
− 25: undefined macro parameter ’\%d’
− 26: missing %s directive for macro "%s"
− 27: macro definition inside macro "%s"
− 28: maximum number of %d macro arguments exceeded
− 29: option -%c was specified twice
− 30: read error on <%s>
− 31: expression must be constant
− 32: initialized data in bss
− 33: missing %s directive in repeat-block
− 34: #%d is not a valid warning message
− 35: relocation not allowed
− 36: illegal escape sequence \%c
− 37: no current macro to exit
− 38: fail: %s

Chapter 3: Standard Syntax Module 7

3 Standard Syntax Module

This chapter describes the standard syntax module which is available with the extension
std.

3.1 Legal

This module is copyright in 2002-2008 by Volker Barthelmann.

This archive may be redistributed without modifications and used for non-commercial pur-
poses.

Distributing modified versions and commercial usage needs my written consent.

Certain modules may fall under additional copyrights.

3.2 Additional options for this version

This syntax module provides the following additional options:

‘-ac’ Immediately allocate common symbols in .bss/.sbss section and define them as
externally visible.

‘-nodotneeded’
Recognize assembly directives without a leading dot (.).

‘-sdlimit=<n>’
Put data up to a maximum size of n bytes into the small-data sections. Default
is n=0, which means the function is disabled.

3.3 General Syntax

Labels have to be terminated with a colon (:). Local labels are preceded by ’.’ and have
to contain digits only. Local labels are valid between two global label definitions.

Make sure that you don’t define a label on the same line as a directive for conditional
assembly (if, else, endif)! This is not supported.

The operands are separated from the mnemonic by whitespace. Multiple operands are
separated by comma (,).

Comments are introduced by the comment character #. The rest of the line will be ignored.
For the c16x, m68k, 650x and ARM backends, the comment character is ; instead of #.

Example:

mylabel: inst.q1.q2 op1,op2,op3 # comment

In expressions, numbers starting with 0x or 0X are hexadecimal (e.g. 0xfb2c). 0b or 0B
introduces binary numbers (e.g. 0b1100101). Other numbers starting with 0 are assumed
to be octal numbers, e.g. 0237. All numbers starting with a non-zero digit are decimal, e.g.
1239.

8 vasm manual

3.4 Directives

The following directives are supported by this syntax module (if the CPU- and output-
module allow it):

.2byte <exp1>[,<exp2>...]
See .uahalf.

.4byte <exp1>[,<exp2>...]
See .uaword.

.8byte <exp1>[,<exp2>...]
See .uaquad.

.ascii <exp1>[,<exp2>,"<string1>"...]
See .byte.

.asciiz "<string1>"[,"<string2>"...]
See .string.

.align <bit_count>[,<fill>]
Insert as much fill bytes as required to reach an address where <bit count> low
order bits are zero. For example .align 2 would make an alignment to the
next 32-bit boundary. Note that this directive

.balign <byte_count>[,<fill>]
Insert as much fill bytes as required to reach an address which is dividable by
<byte count>. For example .balign 2 would make an alignment to the next
16-bit boundary.

.bss Equivalent to .section .bss,"aurw4".

.byte <exp1>[,<exp2>,"<string1>"...]
Assign the integer or string constant operands into successive bytes of memory
in the current section. Any combination of integer and character string constant
operands is permitted.

.comm <symbol>,<size>[,<align>]
Defines a common symbol which has a size of <size> bytes. The final size
and alignment will be assigned by the linker, which will use the highes size and
alignment values of all common symbols with the same name found. A common
symbol is allocated in the .bss section in the final executable. ".comm"-areas
of less than 8 bytes in size are aligned to word boundaries, other- wise to
doubleword boundaries.

.data Equivalent to .section .data,"adrw4".

.endm Ends a macro definition.

.endr Ends a repetition block.

.equ <symbol>,<expression>
See .set.

.extern <symbol>[,<symbol>...]
See .global.

Chapter 3: Standard Syntax Module 9

.file "string"
Set the filename of the input source. This may be used by some output modules.
By default, the input filename passed on the command line is used.

.global <symbol>[,<symbol>...]
Flag <symbol> as an external symbol, which means that <symbol> is visible to
all modules in the linking process. It may be either defined or undefined.

.globl <symbol>[,<symbol>...]
See .global.

.half <exp1>[,<exp2>...]
If the current section location counter is not on a halfword boundary, advance
it to the next halfword boundary. Then, assign the values of the operands into
successive halfwords of memory in the current section.

.if <expression>
Conditionally assemble the following lines if <expression> is non-zero.

.ifeq <expression>
Conditionally assemble the following lines if <expression> is zero.

.ifne <expression>
Conditionally assemble the following lines if <expression> is non-zero.

.ifgt <expression>
Conditionally assemble the following lines if <expression> is greater than zero.

.ifge <expression>
Conditionally assemble the following lines if <expression> is greater than zero
or equal.

.iflt <expression>
Conditionally assemble the following lines if <expression> is less than zero.

.ifle <expression>
Conditionally assemble the following lines if <expression> is less than zero or
equal.

.ifdef <symbol>
Conditionally assemble the following lines if <symbol> is defined.

.ifndef <symbol>
Conditionally assemble the following lines if <symbol> is undefined.

.incbin <file>
Inserts the binary contents of <file> into the object code at this position. The
file will be searched first in the current directory, then in all paths defined by
‘-I’ or .incdir in the order of occurence.

.incdir <path>
Add another path to search for include files to the list of known paths. Paths
defined with ‘-I’ on the command line are searched first.

10 vasm manual

.include <file>
Include source text of <file> at this position. The include file will be searched
first in the current directory, then in all paths defined by ‘-I’ or .incdir in the
order of occurence.

.int <exp1>[,<exp2>...]
See .word.

.lcomm <symbol>,<size>[,<alignment>]
Allocate <size> bytes of space in the .bss section and assign the value to that
location to <symbol>. If <alignment> is given, then the space will be aligned
to an address having <alignment> low zero bits or 2, whichever is greater.
<symbol> may be made globally visible by the .globl directive.

.local <symbol>[,<symbol>...]
Flag <symbol> as a local symbol, which means that <symbol> is local for the
current file and invisible to other modules in the linking process.

.long <exp1>[,<exp2>...]
See .word.

.macro <name>
Defines a macro which can be referenced by <name>. The macro definition is
closed by an .endm directive. When calling a macro you may pass up to 9
arguments, separated by comma. Those arguments are referenced within the
macro context as \1 to \9. Argument \0 is set to the macro’s first qualifier
(mnemonic extension), when given. The special argument \@ inserts a unique
id, useful for defining labels.

.quad <exp1>[,<exp2>...]
If the current section location counter is not on a quadword boundary, advance
it to the next quadword boundary. Then, assign the values of the operands into
successive quadwords of memory in the current section.

.rept <expression>
Repeats the assembly of the block between .rept and .endr <expression> num-
ber of times. <expression> has to be positive.

.section <name>[,"<attributes>"]
Starts a new section named <name> or reactivate an old one. If attributes are
given for an already existing section, they must match exactly. The section’s
name will also be defined as a new symbol, which represents the section’s start
address. The "<attributes>" string may consist of the following characters:
Section Contents:

c section has code

d section has initialized data

u section has uninitialized data

i section has directives (info section)

n section can be discarded

Chapter 3: Standard Syntax Module 11

R remove section at link time

a section is allocated in memory

Section Protection:

r section is readable

w section is writable

x section is executable

s section is sharable

Section Alignment (only one):

0 align to byte boundary

1 align to halfword boundary

2 align to word boundary

3 align to doubleword boundary

4 align to quadword boundary

5 align to 32 byte boundary

6 align to 64 byte boundary

Memory flags:

C load section to Chip RAM

F load section to Fast RAM

.set <symbol>,<expression>
Create a new program symbol with the name <symbol> and assign to it the
value of <expression>. If <symbol> is already assigned, it will contain a new
value from now on.

.size <symbol>,<size>
Set the size in bytes of an object defined at <symbol>.

.short <exp1>[,<exp2>...]
See .half.

.space <exp>[,<fill>]
See .space.

.space <exp>[,<fill>]
Insert <exp> zero or <fill> bytes into the current section.

.stabs "<name>",<type>,<other>,<desc>,<exp>
Add an stab-entry for debugging, including a symbol-string and an expression.

.stabn <type>,<other>,<desc>,<exp>
Add an stab-entry for debugging, without a symbol-string.

.stabd <type>,<other>,<desc>
Add an stab-entry for debugging, without symbol-string and value.

12 vasm manual

.string "<string1>"[,"<string2>"...]
Like .byte, but adds a terminating zero-byte.

.text Equivalent to .section .text,"acrx4".

.type <symbol>,<type>
Set type of symbol called <symbol> to <type>, which must be one of:

1: Object

2: Function
3: Section
4: File

The predefined symbols @object and @function are available for this purpose.

.uahalf <exp1>[,<exp2>...]
Assign the values of the operands into successive two-byte areas of memory in
the current section regardless of section alignment.

.ualong <exp1>[,<exp2>...]
See .uaword.

.uaquad <exp1>[,<exp2>...]
Assign the values of the operands into successive eight-byte areas of memory in
the current section regardless of section alignment.

.uashort <exp1>[,<exp2>...]
See .uahalf.

.uaword <exp1>[,<exp2>...]
Assign the values of the operands into successive four-byte areas of memory in
the current section regardless of section alignment.

.weak <symbol>[,<symbol>...]
Flag <symbol> as a weak symbol, which means that <symbol> is visible to all
modules in the linking process and may be replaced by any global symbol with
the same name. When a weak symbol remains undefined its value defaults to
0.

.word <exp1>[,<exp2>...]
If the current section location counter is not on a word boundary advance it to
the next word boundary. Then assign the values of the operands into successive
words of memory in the current section.

3.5 Known Problems

Some known problems of this module at the moment:
− None.

3.6 Error Messages

This module has the following error messages:
− 1001: mnemonic expected

Chapter 3: Standard Syntax Module 13

− 1002: invalid extension
− 1003: no space before operands
− 1004: too many closing parentheses
− 1005: missing closing parentheses
− 1006: missing operand
− 1007: scratch at end of line
− 1008: \" expected
− 1009: invalid data operand
− 1010: , expected
− 1011: identifier expected
− 1012: illegal escape sequence \\%c
− 1013: expression must be constant
− 1014: unexpected endm without macro
− 1015: endif without if
− 1016: if without endif
− 1017: maximum if-nesting depth exceeded (%d levels)
− 1018: else without if
− 1019: syntax error
− 1020: unexpected endr without rept
− 1021: symbol <%s> already defined with %s scope

14 vasm manual

Chapter 4: Mot Syntax Module 15

4 Mot Syntax Module

This chapter describes the Motorola syntax module, mostly used for the M68k family of
CPUs, which is available with the extension mot.

4.1 Legal

This module is copyright in 2002-2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

4.2 Additional options for this version

This syntax module provides the following additional options:

‘-align’ Enables 16-bit alignment for constant declaration (dc.?, except dc.b) direc-
tives.

‘-devpac’ Devpac-compatibility mode. Enables 16-bit alignment for constant declaration
(dc.?, except dc.b) directives.

‘-phxass’ PhxAss-compatibilty mode. Enables the following features:

−section <name> starts a code section named <name>
instead of a section with also has the type <name>.

−Defines the symbol _PHXASS_.
‘-spaces’ Allow blanks in operands.

4.3 General Syntax

Labels always start at the first column and may be terminated by a colon (:), but don’t
need to. In the last case the mnemonic needs to be separated from the label by whitespace
(not required in any case, e.g. =). Qualifiers are appended to the mnemonic separated
by a dot (if the CPU-module supports qualifiers). The operands are separated from the
mnemonic by whitespace. Multiple operands are separated by comma (,).
Local labels are preceded by ’.’ or terminated by ’$’. For the rest, any alphanumeric
character including ’_’ is allowed. Local labels are valid between two global label definitions.
Make sure that you don’t define a label on the same line as a directive for conditional
assembly (if, else, endif)! This is not supported.
In this syntax module, the operand field must not contain any whitespace characters!
Comments are introduced by the comment character ; or *. The rest of the line will be
ignored. Also everything following the operand field, separated by a whitespace, will be
regarded as comment. Be careful with * which is recognized as the "current pc symbol" in
any operand expression
Example:
mylabel inst.q op1,op2,op3 ;comment

16 vasm manual

In expressions, numbers starting with $ are hexadecimal (e.g. $fb2c). % introduces binary
numbers (e.g. %1100101). Numbers starting with @ are assumed to be octal numbers, e.g.
@237. All numbers starting with a digit are decimal, e.g. 1239.

4.4 Directives

The following directives are supported by this syntax module (if the CPU- and output-
module allow it):

<symbol> = <expression>
Equivalent to <symbol> equ <expression>.

align <bitcount>
Insert as much zero bytes as required to reach an address where <bit count>
low order bits are zero. For example align 2 would make an alignment to the
next 32-bit boundary. Equivalent to cnop 0,1<<bitcount.

blk.b <exp>[,<fill>]
Equivalent to dcb.b <exp>,<fill>.

blk.d <exp>[,<fill>]
Equivalent to dcb.d <exp>,<fill>.

blk.l <exp>[,<fill>]
Equivalent to dcb.l <exp>,<fill>.

blk.q <exp>[,<fill>]
Equivalent to dcb.q <exp>,<fill>.

blk.s <exp>[,<fill>]
Equivalent to dcb.s <exp>,<fill>.

blk.w <exp>[,<fill>]
Equivalent to dcb.w <exp>,<fill>.

blk.x <exp>[,<fill>]
Equivalent to dcb.x <exp>,<fill>.

bss Equivalent to section bss,bss.

clrfo Reset stack-frame offset counter to zero. See fo directive.

clrso Reset structure offset counter to zero. See so directive.

cnop <offset>,<alignment>
Insert as much zero bytes as required to reach an address which can be divided
by <alignment>. Then add <offset> zero bytes.

code Equivalent to section code,code.

comment Everything in the operand field is ignored and seen as a comment. There is only
one exception when the operand contains HEAD=. Then the following expression
is passed to the TOS output module via the symbol ’ TOSFLAGS’, to define the
Atari specific TOS flags.

cseg Equivalent to section code,code.

Chapter 4: Mot Syntax Module 17

data Equivalent to section data,data.

dc.b <exp1>[,<exp2>,"<string1>",’<string2>’...]
Assign the integer or string constant operands into successive bytes of memory
in the current section. Any combination of integer and character string constant
operands is permitted.

dc.d <exp1>[,<exp2>...]
Assign the values of the operands into successive 64-bit words of memory in
the current section. Also IEEE double precision floating point constants are
allowed.

dc.l <exp1>[,<exp2>...]
Assign the values of the operands into successive 32-bit words of memory in the
current section.

dc.q <exp1>[,<exp2>...]
Assign the values of the operands into successive 32-bit words of memory in the
current section.

dc.s <exp1>[,<exp2>...]
Assign the values of the operands into successive 64-bit words of memory in the
current section. Also IEEE single precision floating point constants are allowed.

dc.w <exp1>[,<exp2>...]
Assign the values of the operands into successive 16-bit words of memory in the
current section.

dc.x <exp1>[,<exp2>...]
Assign the values of the operands into successive 64-bit words of memory in
the current section. Also IEEE extended precision floating point constants are
allowed.

dcb.b <exp>[,<fill>]
Insert <exp> zero or <fill> bytes into the current section.

dcb.d <exp>[,<fill>]
Insert <exp> zero or <fill> 64-bit words into the current section. <fill> might
also be an IEEE double precision constant.

dcb.l <exp>[,<fill>]
Insert <exp> zero or <fill> 32-bit words into the current section.

dcb.q <exp>[,<fill>]
Insert <exp> zero or <fill> 64-bit words into the current section.

dcb.s <exp>[,<fill>]
Insert <exp> zero or <fill> 32-bit words into the current section. <fill> might
also be an IEEE single precision constant.

dcb.w <exp>[,<fill>]
Insert <exp> zero or <fill> 16-bit words into the current section.

dcb.x <exp>[,<fill>]
Insert <exp> zero or <fill> 86-bit words into the current section. <fill> might
also be an IEEE extended precision constant.

18 vasm manual

ds.b <exp>
Equivalent to dcb.b <exp>,0.

ds.d <exp>
Equivalent to dcb.d <exp>,0.

ds.l <exp>
Equivalent to dcb.l <exp>,0.

ds.q <exp>
Equivalent to dcb.q <exp>,0.

ds.s <exp>
Equivalent to dcb.s <exp>,0.

ds.w <exp>
Equivalent to dcb.w <exp>,0.

ds.x <exp>
Equivalent to dcb.x <exp>,0.

dseg Equivalent to section data,data.

else Assemble the following lines if the previous if condition was false.

end Assembly will terminate behind this line.

endif Ends a section of conditional assembly.

endm Ends a macro definition.

endr Ends a repetition block.

<symbol> equ <expression>
Define a new program symbol with the name <symbol> and assign to it the
value of <expression>. Defining <symbol> twice will cause an error.

even Aligns to an even address. Equivalent to cnop 0,2.

fail <message>
Immediately break assembly with a fatal error, showing the <message> from
the operand field.

<label> fo.<size> <expression>
Assigns the current value of the stack-frame offset counter to <label>. Af-
terwards the counter is decremented by the instruction’s <size> multiplied by
<expression>. Any valid M68k size extension is allowed for <size>: b, w, l, q,
s, d, x, p. The offset counter can also be referenced directly under the name
__FO.

idnt <name>
Sets the file or module name in the generated object file to <name>, when the
selected output module supports it. By default, the input filename passed on
the command line is used.

if <expression>
Conditionally assemble the following lines if <expression> is non-zero.

Chapter 4: Mot Syntax Module 19

ifeq <expression>
Conditionally assemble the following lines if <expression> is zero.

ifne <expression>
Conditionally assemble the following lines if <expression> is non-zero.

ifgt <expression>
Conditionally assemble the following lines if <expression> is greater than zero.

ifge <expression>
Conditionally assemble the following lines if <expression> is greater than zero
or equal.

iflt <expression>
Conditionally assemble the following lines if <expression> is less than zero.

ifle <expression>
Conditionally assemble the following lines if <expression> is less than zero or
equal.

ifd <symbol>
Conditionally assemble the following lines if <symbol> is defined.

ifnd <symbol>
Conditionally assemble the following lines if <symbol> is undefined.

ifc <string1>,<string2>
Conditionally assemble the following lines if <string1> matches <string2>.

ifnc <string1>,<string2>
Conditionally assemble the following lines if <string1> does not match <string2>.

incbin <file>
Inserts the binary contents of <file> into the object code at this position. The
file will be searched first in the current directory, then in all paths defined by
‘-I’ or incdir in the order of occurence.

incdir <path>
Add another path to search for include files to the list of known paths. Paths
defined with ‘-I’ on the command line are searched first.

include <file>
Include source text of <file> at this position. The include file will be searched
first in the current directory, then in all paths defined by ‘-I’ or incdir in the
order of occurence.

list The following lines will appear in the listing file, if it was requested.

nolist The following lines will not be visible in a listing file.

macro <name>
Defines a macro which can be referenced by <name>. The <name> may also
appear at the left side of the macro directive, starting at the first column.
Then the operand field is ignored. The macro definition is closed by an endm
directive. When calling a macro you may pass up to 9 arguments, separated by

20 vasm manual

comma. Those arguments are referenced within the macro context as \1 to \9.
Argument \0 is set to the macro’s first qualifier (mnemonic extension), when
given. The special argument \@ inserts a unique id, useful for defining labels.

mexit Leave the current macro and continue with assembling the parent context. Note
that this directive also resets the level of conditional assembly to a state before
the macro was invoked (which means that it works as a ’break’ command on
all new if directives).

org <expression>
Sets the base address for the subsequent code.

output <name>
Sets the output file name to <name> when no output name was given on the
command line. A special case for Devpac-compatibility is when <name> starts
with a ’.’ and an output name was already given. Then the current output
name gets <name> appended as an extension.

plen <len>
The the page length for a listing file to <len> lines. Currently ignored.

public <symbol>[,<symbol>...]
Flag <symbol> as an external symbol, which means that <symbol> is visible to
all modules in the linking process. It may be either defined or undefined.

rept <expression>
Repeats the assembly of the block between rept and endr <expression> number
of times. <expression> has to be positive.

<label> rs.<size> <expression>
Works like the so directive, with the only difference that the offset symbol is
named __RS.

rsreset Equivalent to clrso, but the symbol manipulated is __RS.

rsset Equivalent to setso, but the symbol manipulated is __RS.

section [<name>,]<sec_type>[,<mem_type>]]
Starts a new section named <name> or reactivates an old one. <sec_type>
defines the section type and may be code, text (same as code), data or bss.
<sec_type> defaults to code in Phxass mode. Otherwise a single argument
will start a section with the type and name of <sec_type>. When <mem_type>
is given it defines the type of memory, where the section can be loaded. This
is Amiga-specific and allowed identifiers are chip for Chip-RAM and fast for
Fast-RAM. Optionally it is also possible to attach the suffix _C, _F or _P to the
<sec_type> argument for defining the memory type.

<symbol> set <expression>
Create a new program symbol with the name <symbol> and assign to it the
value of <expression>. If <symbol> is already assigned, it will contain a new
value from now on.

setfo <expression>
Sets the stack-frame offset counter to <expresion>. See fo directive.

Chapter 4: Mot Syntax Module 21

setso <expression>
Sets the structure offset counter to <expresion>. See so directive.

<label> so.<size> <expression>
Assigns the current value of the structure offset counter to <label>. Afterwards
the counter is incremented by the instruction’s <size> multiplied by <expres-
sion>. Any valid M68k size extension is allowed for <size>: b, w, l, q, s, d, x,
p. The offset counter can also be referenced directly under the name __SO.

text Equivalent to section code,code.

ttl <name>
PhxAss syntax. Equivalent to idnt <name>.

<name> ttl
Motorola syntax. Equivalent to idnt <name>.

xdef <symbol>[,<symbol>...]
Flag <symbol> as an global symbol, which means that <symbol> is visible to
all modules in the linking process. See also public.

xref <symbol>[,<symbol>...]
Flag <symbol> as externally defined, which means it has to be important from
another module in the linking process. See also public.

4.5 Known Problems

Some known problems of this module at the moment:
− None?

4.6 Error Messages

This module has the following error messages:
− 1001: mnemonic expected
− 1002: invalid extension
− 1003: no space before oprands
− 1004: too many closing parentheses
− 1005: missing closing parentheses
− 1006: missing operand
− 1007: garbage at end of line
− 1008: \ expected
− 1009: invalid data operand
− 1010: , expected
− 1011: identifier expected
− 1012: illegal escape sequence <c>
− 1013: expression must be a constant
− 1014: illegal section type
− 1015: repeatedly defined symbol

22 vasm manual

− 1016: illegal memory type
− 1017: unexpected endm without macro
− 1018: endif without if
− 1019: if without endif
− 1020: maximum if-nesting depth exceeded (%d levels)
− 1021: else without if
− 1022: missing %c
− 1023: cannot open binary file %s
− 1024: internal symbol %s redefined by user
− 1025: syntax error
− 1026: unexpected endr without rept
− 1027: directive has no effect

Chapter 5: Oldstyle Syntax Module 23

5 Oldstyle Syntax Module

This chapter describes the oldstyle syntax module suitable for some 8-bit CPUs (6502, 680x,
Z80, etc.), which is available with the extension oldstyle.

5.1 Legal

This module is copyright in 2002-2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

5.2 Additional options for this version

This syntax module provides the following additional options:

‘-dotdir’ Directives have to be preceded by a dot (.).

5.3 General Syntax

Labels always start at the first column and may be terminated by a colon (:), but don’t
need to. In the last case the mnemonic needs to be separated from the label by whitespace
(not required in any case, e.g. =). The operands are separated from the mnemonic by
whitespace. Multiple operands are separated by comma (,).
Make sure that you don’t define a label on the same line as a directive for conditional
assembly (if, else, endif)! This is not supported.
Comments are introduced by the comment character ;. The rest of the line will be ignored.
Example:
mylabel instr op1,op2 ;comment

In expressions, numbers starting with $ are hexadecimal (e.g. $fb2c). % introduces binary
numbers (e.g. %1100101). Numbers starting with @ are assumed to be octal numbers, e.g.
@237. All numbers starting with a digit are decimal, e.g. 1239.

5.4 Directives

The following directives are supported by this syntax module (if the CPU- and output-
module allow it):

<symbol> = <expression>
Equivalent to <symbol> equ <expression>.

addr <exp1>[,<exp2>...]
Equivalent to word <exp1>[,<exp2>...].

align <bitcount>
Insert as much zero bytes as required to reach an address where <bit count>
low order bits are zero. For example align 2 would make an alignment to the
next 32-bit boundary.

24 vasm manual

asc <exp1>[,<exp2>,"<string1>"...]
Equivalent to byte <exp1>[,<exp2>,"<string1>"...].

ascii <exp1>[,<exp2>,"<string1>"...]
See defm.

asciiz "<string1>"[,"<string2>"...]
See string.

binary <file>
Inserts the binary contents of <file> into the object code at this position. The
file will be searched first in the current directory, then in all paths defined by
‘-I’ or incdir in the order of occurence.

blk <exp>[,<fill>]
Insert <exp> zero or <fill> bytes into the current section.

blkw <exp>[,<fill>]
Insert <exp> zero or <fill> 16-bit words into the current section, using the en-
dianess of the target CPU.

byt Increases the program counter by one. Equivalent to blk 1,0.

byte <exp1>[,<exp2>,"<string1>"...]
Assign the integer or string constant operands into successive bytes of memory
in the current section. Any combination of integer and character string constant
operands is permitted.

data <exp1>[,<exp2>,"<string1>"...]
Equivalent to byte <exp1>[,<exp2>,"<string1>"...].

db <exp1>[,<exp2>,"<string1>"...]
Equivalent to byte <exp1>[,<exp2>,"<string1>"...].

dc <exp>[,<fill>]
Equivalent to blk <exp>[,<fill>].

defb <exp1>[,<exp2>,"<string1>"...]
Equivalent to byte <exp1>[,<exp2>,"<string1>"...].

defc <symbol> = <expression>
Define a new program symbol with the name <symbol> and assign to it the
value of <expression>. Defining <symbol> twice will cause an error.

defl <exp1>[,<exp2>...]
Assign the values of the operands into successive 32-bit integers of memory in
the current section, using the endianess of the target CPU.

defp <exp1>[,<exp2>...]
Assign the values of the operands into successive 24-bit integers of memory in
the current section, using the endianess of the target CPU.

defm "string"
Equivalent to text "string".

defw <exp1>[,<exp2>...]
Equivalent to word <exp1>[,<exp2>...].

Chapter 5: Oldstyle Syntax Module 25

dfb <exp1>[,<exp2>,"<string1>"...]
Equivalent to byte <exp1>[,<exp2>,"<string1>"...].

dfw <exp1>[,<exp2>...]
Equivalent to word <exp1>[,<exp2>...].

defs <exp>[,<fill>]
Equivalent to blk <exp>[,<fill>].

ds <exp>[,<fill>]
Equivalent to blk <exp>[,<fill>].

dsb <exp>[,<fill>]
Equivalent to blk <exp>[,<fill>].

dsw <exp>[,<fill>]
Equivalent to blkw <exp>[,<fill>].

dw <exp1>[,<exp2>...]
Equivalent to word <exp1>[,<exp2>...].

end Assembly will terminate behind this line.

endif Ends a section of conditional assembly.

el Equivalent to else.

else Assemble the following lines when the previous if-condition was false.

ei Equivalent to endif. (Not available for Z80 CPU)

endm Ends a macro definition.

endmac Ends a macro definition.

endmacro Ends a macro definition.

endr Ends a repetition block.

endrep Ends a repetition block.

endrepeat
Ends a repetition block.

<symbol> eq <expression>
Equivalent to <symbol> equ <expression>.

<symbol> equ <expression>
Define a new program symbol with the name <symbol> and assign to it the
value of <expression>. Defining <symbol> twice will cause an error.

extern <symbol>[,<symbol>...]
See global.

even Aligns to an even address. Equivalent to align 1.

fill <exp>
Equivalent to blk <exp>,0.

26 vasm manual

global <symbol>[,<symbol>...]
Flag <symbol> as an external symbol, which means that <symbol> is visible to
all modules in the linking process. It may be either defined or undefined.

if <expression>
Conditionally assemble the following lines if <expression> is non-zero.

ifdef <symbol>
Conditionally assemble the following lines if <symbol> is defined.

ifndef <symbol>
Conditionally assemble the following lines if <symbol> is undefined.

ifeq <expression>
Conditionally assemble the following lines if <expression> is zero.

ifne <expression>
Conditionally assemble the following lines if <expression> is non-zero.

ifgt <expression>
Conditionally assemble the following lines if <expression> is greater than zero.

ifge <expression>
Conditionally assemble the following lines if <expression> is greater than zero
or equal.

iflt <expression>
Conditionally assemble the following lines if <expression> is less than zero.

ifle <expression>
Conditionally assemble the following lines if <expression> is less than zero or
equal.

incbin <file>
Inserts the binary contents of <file> into the object code at this position. The
file will be searched first in the current directory, then in all paths defined by
‘-I’ or incdir in the order of occurence.

incdir <path>
Add another path to search for include files to the list of known paths. Paths
defined with ‘-I’ on the command line are searched first.

include <file>
Include source text of <file> at this position. The include file will be searched
first in the current directory, then in all paths defined by ‘-I’ or incdir in the
order of occurence.

mac <name>
Equivalent to macro <name>.

local <symbol>[,<symbol>...]
Flag <symbol> as a local symbol, which means that <symbol> is local for the
current file and invisible to other modules in the linking process.

Chapter 5: Oldstyle Syntax Module 27

macro <name>
Defines a macro which can be referenced by <name>. The <name> may also
appear at the left side of the macro directive, starting at the first column. The
macro definition is closed by an endm directive. When calling a macro you may
pass up to 9 arguments, separated by comma. Those arguments are referenced
within the macro context as \1 to \9. Argument \0 is set to the macro’s first
qualifier (mnemonic extension), when given. The special argument \@ inserts a
unique id, useful for defining labels.

mdat <file>
Equivalent to incbin <file>.

org <expression>
Sets the base address for the subsequent code. This is equivalent to
*=<expression>.

repeat <expression>
Equivalent to rept <expression>.

rept <expression>
Repeats the assembly of the block between rept and endr <expression> number
of times. <expression> has to be positive.

reserve <exp>
Equivalent to blk <exp>,0.

section <name>[,"<attributes>"]
Starts a new section named <name> or reactivate an old one. If attributes are
given for an already existing section, they must match exactly. The section’s
name will also be defined as a new symbol, which represents the section’s start
address. The "<attributes>" string may consist of the following characters:
Section Contents:

c section has code

d section has initialized data

u section has uninitialized data

i section has directives (info section)

n section can be discarded

R remove section at link time

a section is allocated in memory

Section Protection:

r section is readable

w section is writable

x section is executable

s section is sharable

28 vasm manual

Section Alignment (only one):

0 align to byte boundary

1 align to halfword boundary

2 align to word boundary

3 align to doubleword boundary

4 align to quadword boundary

5 align to 32 byte boundary

6 align to 64 byte boundary

spc <exp> Equivalent to blk <exp>,0.

string "<string1>"[,"<string2>"...]
Like string, but adds a terminating zero-byte.

text "string"
Places a single string constant operands into successive bytes of memory in the
current section.

weak <symbol>[,<symbol>...]
Flag <symbol> as a weak symbol, which means that <symbol> is visible to all
modules in the linking process and may be replaced by any global symbol with
the same name. When a weak symbol remains undefined its value defaults to
0.

wor <exp1>[,<exp2>...]
Equivalent to word <exp1>[,<exp2>...].

wrd Increases the program counter by two. Equivalent to blkw 1,0.

word <exp1>[,<exp2>...]
Assign the values of the operands into successive 16-bit words of memory in the
current section, using the endianess of the target CPU.

xdef <symbol>[,<symbol>...]
See global.

xlib <symbol>[,<symbol>...]
See global.

xref <symbol>[,<symbol>...]
See global.

5.5 Known Problems

Some known problems of this module at the moment:

− Addresses assigned to org or to the current pc symbol ’*’ (on the z80 the pc symbol
is ’$’) must be constant.

− Expressions in an if directive must be constant.

Chapter 5: Oldstyle Syntax Module 29

5.6 Error Messages

This module has the following error messages:
− 1001: syntax error
− 1002: invalid extension
− 1003: no space before operands
− 1004: too many closing parentheses
− 1005: missing closing parentheses
− 1006: missing operand
− 1007: garbage at end of line
− 1008: %c expected
− 1009: invalid data operand
− 1010: , expected
− 1011: identifier expected
− 1012: illegal escape sequence \%c
− 1013: expression must be a constant
− 1014: repeatedly defined symbol
− 1015: endif without if
− 1016: if without endif
− 1017: maximum if-nesting depth exceeded (%d levels)
− 1018: else without if
− 1019: unexpected endr without macro
− 1020: unexpected endr without rept
− 1021: cannot open binary file "%s"
− 1022: symbol <%s> already defined with %s scope

30 vasm manual

Chapter 6: Simple binary output module 31

6 Simple binary output module

This chapter describes the simple binary output module which can be selected with the
‘-Fbin’ option.

6.1 Legal

This module is copyright in 2002,2008 by Volker Barthelmann.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

6.2 Additional options for this version

‘-cbm-prg’
Writes a Commodore PRG header in front of the output file, which consists of
two bytes in little-endian order, defining the load address of the program.

6.3 General

This output module outputs the contents of all sections as simple binary data without any
header or additional information. When there are multiple sections, they must not overlap.
Gaps between sections are filled with zero bytes. Undefined symbols are not allowed.

6.4 Known Problems

Some known problems of this module at the moment:
− None.

6.5 Error Messages

This module has the following error messages:
− 3001: sections must not overlap
− 3007: undefined symbol <%s>

32 vasm manual

Chapter 7: Test output module 33

7 Test output module

This chapter describes the test output module which can be selected with the ‘-Ftest’
option.

7.1 Legal

This module is copyright in 2002 by Volker Barthelmann.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

7.2 Additional options for this version

This output module provides no additional options.

7.3 General

This output module outputs a textual description of the contents of all sections. It is mainly
intended for debugging.

7.4 Restrictions

None.

7.5 Known Problems

Some known problems of this module at the moment:
− None.

7.6 Error Messages

This module has the following error messages:
− None.

34 vasm manual

Chapter 8: ELF output module 35

8 ELF output module

This chapter describes the ELF output module which can be selected with the ‘-Felf’
option.

8.1 Legal

This module is copyright in 2002-2008 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

8.2 Additional options for this version

None.

8.3 General

This output module outputs the ELF (Executable and Linkable Format) format, which is a
portable object file format which works for a variety of 32- and 64-bit operating systems.

8.4 Restrictions

The ELF output format, as implemented in vasm, currently supports the following architec-
tures:
− PowerPC
− M68k
− ARM
− i386

The supported relocation types depend on the selected architecture.

8.5 Known Problems

Some known problems of this module at the moment:
− None.

8.6 Error Messages

This module has the following error messages:
− 3002: output module doesn’t support cpu <name>
− 3003: write error
− 3004: section attributes <attr> not suppported
− 3005: reloc type <m>, size <n>, mask <mask> (symbol <sym> + <offset>) not supported
− 3006: reloc type <n> not supported

36 vasm manual

Chapter 9: a.out output module 37

9 a.out output module

This chapter describes the a.out output module which can be selected with the ‘-Faout’
option.

9.1 Legal

This module is copyright in 2008 by Frank Wille.

This archive may be redistributed without modifications and used for non-commercial pur-
poses.

Distributing modified versions and commercial usage needs my written consent.

Certain modules may fall under additional copyrights.

9.2 Additional options for this version

‘-mid=<machine id>’
Sets the MID field of the a.out header to the specified value. The MID defaults
to 2 (Sun020 big-endian) for M68k and to 100 (PC386 little-endian) for x86.

9.3 General

This output module outputs the a.out (assembler output) format, which is an older 32-bit
format for Unix-like operating systems, originally invented by AT&T.

9.4 Restrictions

The a.out output format, as implemented in vasm, currently supports the following archi-
tectures:

− M68k

− i386

The following standard relocations are supported by default:

− absolute, 8, 16, 32 bits

− pc-relative, 8, 16, 32 bits

− base-relative

Standard relocations occupy 8 bytes and don’t include an addend, so they are not suitable
for most RISC CPUs. The extended relocations format occupies 12 bytes and also allows
more relocation types.

9.5 Known Problems

Some known problems of this module at the moment:

− Support for stab debugging symbols is still missing.

− The extended relocation format is not supported.

38 vasm manual

9.6 Error Messages

This module has the following error messages:
− 3004: section attributes <attr> not suppported
− 3008: output module doesn’t allow multiple sections of the same type

Chapter 10: TOS output module 39

10 TOS output module

This chapter describes the TOS output module which can be selected with the ‘-Ftos’
option.

10.1 Legal

This module is copyright in 2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

10.2 Additional options for this version

‘-tos-flags=<flags>’
Sets the flags field in the TOS file header. Defaults to 0. Overwrites a TOS
flags definition in the assembler source.

10.3 General

This module outputs the TOS executable file format, which is used on Atari 16/32-bit
computers with 68000 up to 68060 CPU.

10.4 Restrictions

−All symbols must be defined, otherwise the generation of the executable
fails. Unknown symbols are listed by vasm.

−The only relocations allowed in this format are 32-bit absolute.
Those are restrictions of the output format, not of vasm.

10.5 Known Problems

Some known problems of this module at the moment:
− None.

10.6 Error Messages

This module has the following error messages:
− 3004: section attributes <attr> not suppported
− 3005: reloc type %d, size %d, mask 0x%lx (symbol %s + 0x%lx) not supported
− 3006: reloc type %d not supported
− 3007: undefined symbol <%s>
− 3008: output module doesn’t allow multiple sections of the same type

40 vasm manual

Chapter 11: vobj output module 41

11 vobj output module

This chapter describes the simple binary output module which can be selected with the
‘-Fvobj’ option.

11.1 Legal

This module is copyright in 2002-2008 by Volker Barthelmann.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

11.2 Additional options for this version

None.

11.3 General

This output module outputs the vobj object format, a simple portable proprietary object
file format of vasm.
As this format is not yet fixed, it is not described here.

11.4 Restrictions

None.

11.5 Known Problems

Some known problems of this module at the moment:
− None.

11.6 Error Messages

This module has the following error messages:
− None.

42 vasm manual

Chapter 12: Amiga output module 43

12 Amiga output module

This chapter describes the AmigaOS hunk-format output module which can be selected
with the ‘-Fhunk’ option to generate objects and with the ‘-Fhunkexe’ option to generate
executable files.

12.1 Legal

This module is copyright in 2002-2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

12.2 Additional options for this version

These options are valid for the hunkexe module only:

‘-databss’
Try to shorten sections in the output file by removing zero words without re-
location from the end. This technique is only supported by AmigaOS 2.0 and
higher.

12.3 General

This output module outputs the hunk object (standard for M68k and extended for PowerPC)
and hunkexe executable format, which is a proprietary file format used by AmigaOS and
WarpOS.
The hunkexe module will generate directly executable files, without the need for another
linker run. But you have to make sure that there are no undefined symbols, common
symbols, or unusual relocations (e.g. small data) left.
It is allowed to define sections with the same name but different attributes. They will be
regarded as different entities.

12.4 Restrictions

The hunk/hunkexe output format is only intended for M68k and PowerPC cpu modules and
will abort when used otherwise.
The hunk module supports the following relocation types:
− absolute, 32-bit
− absolute, 16-bit
− absolute, 8-bit
− relative, 8-bit
− relative, 14-bit (mask 0xfffc) for PPC branch instructions.
− relative, 16-bit
− relative, 24-bit (mask 0x3fffffc) for PPC branch instructions.

44 vasm manual

− relative, 32-bit
− base-relative, 16-bit
− common symbols are supported as 32-bit absolute and relative references

The hunkexe module supports absolute 32-bit relocations only.

12.5 Known Problems

Some known problems of this module at the moment:
− The hunkexe module won’t process common symbols and allocate them in a BSS section.

Use a real linker for that.

12.6 Error Messages

This module has the following error messages:
− 3001: multiple sections not supported by this format
− 3002: output module doesn’t support cpu <name>
− 3003: write error
− 3004: section attributes <attr> not suppported
− 3005: reloc type <m>, size <n>, mask <mask> (symbol <sym> + <offset>) not supported
− 3006: reloc type <n> not supported

Chapter 13: m68k cpu module 45

13 m68k cpu module

This chapter documents the backend for the Motorola M68k/CPU32/ColdFire micropro-
cessor family.

13.1 Legal

This module is copyright in 2002-2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

13.2 Additional options for this module

This module provides the following additional options:

13.2.1 CPU selections

‘-m68000’ Generate code for the MC68000 CPU.

‘-m68008’ Generate code for the MC68008 CPU.

‘-m68010’ Generate code for the MC68010 CPU.

‘-m68020’ Generate code for the MC68020 CPU.

‘-m68030’ Generate code for the MC68030 CPU.

‘-m68040’ Generate code for the MC68040 CPU.

‘-m68060’ Generate code for the MC68060 CPU.

‘-m68020up’
Generate code for the MC68020-68060 CPU. Be careful with instructions like
PFLUSHA, which exist on 68030 and 68040/060 with a different opcode (vasm
will use the 040/060 version).

‘-mcpu32’ Generate code for the CPU32 family (MC6833x, MC6834x, etc.).

‘-mcf5...’
‘-m5...’ Generate code for a ColdFire family CPU. The following types are recognized:

5202, 5204, 5206, 520x, 5206e, 5207, 5208, 5210a, 5211a, 5212, 5213, 5214, 5216,
5224, 5225, 5232, 5233, 5234, 5235, 523x, 5249, 5250, 5253, 5270, 5271, 5272,
5274, 5275, 5280, 5281, 528x, 52221, 52553, 52230, 52231, 52232, 52233, 52234,
52235, 52252, 52254, 52255, 52256, 52258, 52259, 52274, 52277, 5307, 5327,
5328, 5329, 532x, 5372, 5373, 537x, 53011, 53012, 53013, 53014, 53015, 53016,
53017, 5301x, 5407, 5470, 5471, 5472, 5473, 5474, 5475, 547x, 5480, 5481, 5482,
5483, 5484, 5485, 548x, 54450, 54451, 54452, 54453, 5445x.

‘-mcfv2’ Generate code for the V2 ColdFire core. This option selects ISA A (no hard-
ware division or MAC), which is the most limited ISA supported by 5202, 5204
and 5206. All other ColdFire chips are backwards compatible to V2.

46 vasm manual

‘-mcfv3’ Generate code for the V3 ColdFire core. This option selects ISA A+, hardware
division MAC and EMAC instructions, which are supported by nearly all V3
CPUs, except the 5307.

‘-mcfv4’ Generate code for the V4 ColdFire core. This option selects ISA B and MAC
as supported by the 5407.

‘-mcfv4e’ Generate code for the V4e ColdFire core. This option selects ISA B, USP-,
FPU-, MAC- and EMAC-instructions (no hardware division) as supported by
all 547x and 548x CPUs.

‘-m68851’ Generate code for the MC68851 MMU. May be used in combination with an-
other -m option.

‘-m68881’ Generate code for the MC68881 FPU. May be used in combination with another
-m option.

‘-m68882’ Generate code for the MC68882 FPU. May be used in combination with another
-m option.

13.2.2 Optimization options

‘-no-opt’ Disable all optimizations.

‘-opt-clr’
Enables optimization from MOVE #0,<ea> into CLR <ea>. Note that CLR will
execute a read-modify-write cycle on the MC68000.

‘-opt-movem’
Enables optimization from MOVEM <ea>,Rn into MOVE <ea>,Rn (or the other way
around). This optimization will modify the flags, when the destination is no
address register.

‘-opt-pea’
Enables optimization from MOVE #x,-(SP) into PEA x. This optimization will
leave the flags unmodified, which might not be intended.

‘-opt-st’ Enables optimization from MOVE.B #-1,<ea> into ST <ea>. This optimization
will leave the flags unmodified, which might not be intended.

‘-opt-fconst’
Floating point constants are loaded with the lowest precision possible. This
means that FMOVE.D #1.0,FP0 would be optimized to FMOVE.S #1.0,FP0, be-
cause it is faster and shorter at the same precision. The optimization will be
performed on all FPU instructions with immediate addressing mode.

‘-opt-brajmp’
Translate relative branch instructions, whose destination is in a different section,
into absolute jump instructions.

‘-opt-allbra’
When specified the assembler will also try to optimize branch instructions which
already have a valid size extension. This option is automatically enabled in
‘-phxass’ mode.

Chapter 13: m68k cpu module 47

‘-showopt’
Print all optimizations and translations vasm is doing (same as opt ow+).

13.2.3 Other options

‘-sdreg=<n>’
Set the small data base register to An. <n> is valid between 2 and 6.

‘-elfregs’
Register names are preceded by a ’%’ to prevent confusion with symbol names.

‘-conv-brackets’
Brackets (’[’ and ’]’) in an operand are automatically converted into paren-
theses (’(’ and ’)’) as long as the CPU is 68000 or 68010. This is a compati-
bility option for some old assemblers.

‘-rangewarnings’
Values which are out of range usually produce an error. With this option the
errors 2026, 2030, 2033 and 2037 will be displayed as a warning, allowing the
user to create an object file.

‘-phxass’ PhxAss-compatibilty mode. The "current PC symbol" (e.g. * in mot-syntax
module) is set to the instruction’s address + 2 whenever an instruction is parsed.
JMP/JSR (label,PC) will never be optimized (into a branch, for example). It
will also automatically enable ‘-opt-allbra’.

‘-devpac’ All options are initially set to be Devpac compatible. Which means that all
optimizations are disabled, no debugging symbols will be written and vasm will
warn about any optimization being done. Other options are the same as vasm’s
defaults.

13.3 General

This backend accepts M68k and CPU32 instructions as described in Mototola’s M68000
family Programmer’s Reference Manual. Additionally it supports ColdFire instructions as
described in Motorola’s ColdFire Microprocessor Family Programmer’s Reference Manual.
The syntax for the scale factor in ColdFire MAC instruction is << for left- and >> for right-
shift. The scale factor may be inserted as an optional operand, when needed. Example:
mac d0.l,d1.u,<<.
The mask flag in MAC instructions is written as & and is appended directly on the effective
address operand. Example: mac d0,d1,(a0)&,d2.
The target address type is 32bit.
Default alignment for instructions is 2 bytes. Sections will be aligned to 8 bytes by default.
The default alignment for data is 2 bytes, when the data size is larger than 8 bits.

13.4 Extensions

This backend extends the selected syntax module by the following directives:

.sdreg <An>
Equivalents to near <An>.

48 vasm manual

basereg <expression>,<An>
Starts a block of base-relative addressing through register An (remember that
A7 is not allowed as a base register). The programmer has to make sure that
<expression> is placed into An first, while the assembler automatically subtracts
<expression>, which is usually a program label with an optional offset, from each
displacement in a (d,An) addressing mode. basereg has priority over the near
directive. Its effect can be suspended with the endb directive. It is allowed to
use several base registers in parallel.

cpu32 Generate code for the CPU32 family.

endb <An> Ends a basereg block and suspends its effect onto the specified base register An.
It may be reused with a different base expression thereafter (refer to basereg).

far Disables small data (base-relative) mode. All data references will be absolute.

fpu <cpID>
Enables 68881/68882 FPU code generation. The <cpID> is inserted into the
FPU instructions to select the correct coprocessor. Note that <cpID> is always
1 for the on-chip FPUs in the 68040 and 68060. A <cpID> of zero will disable
FPU code generation.

machine <cpu_type>
Makes the assembler generate code for <cpu type>, which can be the following:
68000, 68010, 68020, 68030, 68040, 68060, 68851, 68881, 68882, cpu32. And
various ColdFire CPUs, starting with 5....

mc68000 Generate code for the MC68000 CPU.

mc68010 Generate code for the MC68010 CPU.

mc68020 Generate code for the MC68020 CPU.

mc68030 Generate code for the MC68030 CPU.

mc68040 Generate code for the MC68040 CPU.

mc68060 Generate code for the MC68060 CPU.

mcf5... Generate code for a ColdFire CPU. The recognized models are listed in the
assembler-options section.

near [<An>]
Enables small data (base-relative) mode and sets the base register to An. near
without an argument will reactivate a previously defined small data mode, which
might be switched off by a far directive.

opt <option>[,<option>...]
Sets Devpac-compatible options. When option ‘-phxass’ is given, then it will
parse PhxAss options (which is discouraged, so there is no detailed description
here). The supported Devpac2-style options are always suffixed by a + or - to
enable or disable the option:

a Automatically optimize absolute to PC-relative references. Default
is on.

Chapter 13: m68k cpu module 49

c Case-sensitivity for all symbols, instructions and macros. Default
is on.

d Include all symbols for debugging in the output file. Default is on.

o Enable all standard optimizations and branch- and displacement
optimizations, or disable all optimizations. Default is on.

o1 Enable branch optimizations. Default is on.

o2 Enable displacement optimizations. Default is on.

ow Show all optimizations being peformed. Default is off.

p Check if code is position independant. This will cause an error on
each relocation being required. Default is off.

s Include symbols in listing file. Default is on.

t Check size and type of all expressions. Default is on.

w Show assembler warnings. Default is on.

Also the following Devpac3-style options are supported:

autopc Corresponds to a+.

case Corresponds to c+.

chkpc Corresponds to p+.

debug Corresponds to d+.

symtab Corresponds to s+.

type Corresponds to t+.

warn Corresponds to w+.

xdebug Corresponds to x+.

noautopc Corresponds to a-.

nocase Corresponds to c-.

nochkpc Corresponds to p-.

nodebug Corresponds to d-.

nosymtab Corresponds to s-.

notype Corresponds to t-.

nowarn Corresponds to w-.

noxdebug Corresponds to x-.

p=<type> Sets the CPU type to any model vasm supports (original Devpac3
only allowed 68000-68040, 68332, 68881, 68882 and 68851).

The following directives are only available for the Motorola syntax module:

50 vasm manual

<symbol> equr <Rn>
Define a new symbol named <symbol> and assign the data or address register
Rn, which can be used from now on in operands. Note that a register symbol
must be defined before it can be used!

<symbol> equrl <reglist>
Equivalents to <symbol> reg <reglist>.

<symbol> fequr <FPn>
Define a new symbol named <symbol> and assign the FPU register FPn, which
can be used from now on in operands. Note that a register symbol must be
defined before it can be used!

<symbol> fequrl <reglist>
Equivalents to <symbol> freg <reglist>.

<symbol> freg <reglist>
Defines a new symbol named <symbol> and assign the FPU register list <reglist>
to it. Registers in a list must be separated by a slash (/) and ranges or registers
can be defined by using a hyphen (-). Examples for valid FPU register lists
are: fp0-fp7, fp1-3/fp5/fp7, fpiar/fpcr.

<symbol> reg <reglist>
Defines a new symbol named <symbol> and assign the register list <reglist> to
it. Registers in a list must be separated by a slash (/) and ranges or registers
can be defined by using a hyphen (-). Examples for valid register lists are:
d0-d7/a0-a6, d3-6/a0/a1/a4-5.

13.5 Optimizations

This backend performs the following operand optimizations:
− (0,An) optimized to (An).
− (d16,An) translated to (bd32,An,ZDn.w), when d16 is not between -32768 and 32767

and the selected CPU allows it (68020 up or CPU32).
− (d16,PC) translated to (bd32,PC,ZDn.w), when d16 is not between -32768 and 32767

and the selected CPU allows it (68020 up or CPU32).
− (d8,An,Rn) translated to (bd,An,Rn), when d8 is not between -128 and 127 and the

selected CPU allows it (68020 up or CPU32).
− (d8,PC,Rn) translated to (bd,PC,Rn), when d8 is not between -128 and 127 and the

selected CPU allows it (68020 up or CPU32).
− <exp>.l optimized to <exp>.w, when <exp> is absolute and between -32768 and 32767.
− <exp>.w translated to <exp>.l, when <exp> is a program label or absolute and not

between -32768 and 32767.
− (0,An,...) optimized to (An,...) (which means the base displacement will be sup-

pressed). This allows further optimization to (An), when the index is suppressed.
− (bd16,An,...) translated to (bd32,An,...), when bd16 is not between -32768 and

32767.
− (bd32,An,...) optimized to (bd16,An,...), when bd16 is between -32768 and 32767.

Chapter 13: m68k cpu module 51

− (bd32,An,ZRn) optimized to (d16,An), when bd32 is between -32768 and 32767, and
the index is suppressed (zero-Rn).

− (An,ZRn) optimized to (An), when the index is suppressed.
− (0,PC,...) optimized to (PC,...) (which means the base displacement will be sup-

pressed).
− (bd16,PC,...) translated to (bd32,PC,...), when bd16 is not between -32768 and

32767.
− (bd32,PC,...) optimized to (bd16,PC,...), when bd16 is between -32768 and 32767.
− (bd32,PC,ZRn) optimized to (d16,PC), when bd32 is between -32768 and 32767, and

the index is suppressed (zero-Rn).
− ([0,Rn,...],...) optimized to ([An,...],...) (which means the base displacement

will be suppressed).
− ([bd16,Rn,...],...) translated to ([bd32,An,...],...), when bd16 is not between

-32768 and 32768.
− ([bd32,Rn,...],...) optimized to ([bd16,An,...],...), when bd32 is between -

32768 and 32768.
− ([...],0) optimized to ([...]) (which means the outer displacement will be sup-

pressed).
− ([...],od16) translated to ([...],od32), when od16 is not between -32768 and

32767.
− ([...],od32) translated to ([...],od16), when od32 is between -32768 and 32767.

Note that an operand optimization will only take place when a displacement’s size was not
enforced by the programmer (e.g. (4.l,a0))!
This backend performs the following instruction optimizations:
− MOVE.L #x,Dn optimized to MOVEQ #x,Dn, when x is between -128 and 127.
− MOVE.L #x,<ea> optimized to MOV3Q #x,<ea>, for ColdFire ISA B and ISA C, when x

is -1 or between 1 and 7.
− MOVE.? #0,<ea> optimized to CLR.? <ea>, when allowed by the option -opt-clr or a

different CPU than the MC68000 was selected.
− MOVE.B #-1,<ea> optimized to ST <ea>, when allowed by the option -opt-st.
− MOVE.? #x,-(SP) optimized to PEA x, when allowed by the option -opt-pea. The

move-size must not be byte (.b).
− MOVEA.? #0,An optimized to SUBA.L An,An.
− MOVEA.L #x,An optimized to MOVEA.W #x,An, when x is between -32768 and 32767.
− MOVEA.L #label,An optimized to LEA label,An, which could allow further optimiza-

tion to LEA label(PC),An.
− MOVEM.? <reglist> is deleted, when the register list was empty.
− MOVEM.? <ea>,An optimized to MOVE.? <ea>,An, when the register list only contains a

single address register.
− MOVEM.? <ea>,Rn optimized to MOVE.? <ea>,Rn and MOVEM.? Rn,<ea> optimized to

MOVE.? Rn,<ea>, when allowed by the option -opt-movem and the register list only
contains a single register.

52 vasm manual

− FMOVEM.? <reglist> is deleted, when the register list was empty.

− CLR.L Dn optimized to MOVEQ #0,Dn.

− EORI.? #-1,<ea> optimized to NOT.? <ea>.

− ADD.? #x,<ea> optimized to ADDQ.? #x,<ea>, when x is between 1 and 8.

− SUB.? #x,<ea> optimized to SUBQ.? #x,<ea>, when x is between 1 and 8.

− ADD.? #x,<ea> optimized to SUBQ.? #x,<ea>, when x is between -1 and -8.

− SUB.? #x,<ea> optimized to ADDQ.? #x,<ea>, when x is between -1 and -8.

− ADDA.? #0,An and SUBA.? #0,An will be deleted.

− ADDA.? #x,An optimized to LEA (x,An),(An), when x is between -32768 and 32767.

− SUBA.? #x,An optimized to LEA (-x,An),(An), when x is between -32767 and 32768.

− LEA (0,An),An will be deleted.

− LEA (d,Am),An will be translated into a combination of MOVEA and ADDA.L for 68000
and 68010, when d is lower than -32768 or higher than 32767.

− LINK.L An,#x optimized to LINK.W An,#x, when x is between -32768 and 32767.

− LINK.W An,#x translated to LINK.L An,#x, when x is not between -32768 and 32767
and selected CPU supports this instruction.

− CMP.? #0,<ea> optimized to TST.? <ea>. The selected CPU type must be MC68020
up, ColdFire or CPU32 to support address register direct as effective address (<ea>).

− JMP <label> optimized to BRA.? <label>, when <label> is defined in the same section
and in the range of -32768 to 32767 bytes from the current address.

− JSR <label> optimized to BSR.? <label>, when <label> is defined in the same section
and in the range of -32768 to 32767 bytes from the current address.

− BRA <label> translated to JMP <label>, when <label> is not defined in the same section
(and option -opt-brajmp is given), or outside the range of -32768 to 32767 bytes
from the current address when the selected CPU is not 68020 up, CPU32 or ColdFire
ISA B/C.

− BSR <label> translated to JSR <label>, when <label> is not defined in the same section
(and option -opt-brajmp is given), or outside the range of -32768 to 32767 bytes
from the current address when the selected CPU is not 68020 up, CPU32 or ColdFire
ISA B/C.

− B<cc> <label> translated into a combination of B!<cc> *+8 and JMP <label>, when
<label> is not defined in the same section (and option -opt-brajmp is given), or outside
the range of -32768 to 32767 bytes from the current address when the selected CPU is
not 68020 up, CPU32 or ColdFire ISA B/C.

− B<cc> <label> is automatically optimized to 8-bit, 16-bit or 32-bit (68020 up, CPU32,
CF5407 only), whatever fits best. When the selected CPU doesn’t support 32-bit
branches it will try to change the conditional branch into a B<!cc> *+8 and JMP
<label> sequence.

− <cp>B<cc> <label> is automatically optimized to 16-bit or 32-bit, whatever fits best.
<cp> means coprocessor and is P for the PMMU and F for the FPU.

Chapter 13: m68k cpu module 53

13.6 Known Problems

Some known problems of this module at the moment:
− None?

13.7 Error Messages

This module has the following error messages:
− 2001: instruction not supported on selected architecture
− 2002: illegal addressing mode
− 2003: invalid register list
− 2004: missing) in register indirect addressing mode
− 2005: address register required
− 2006: bad extension - using default
− 2007: displacement outside parentheses ignored
− 2008: base or index register expected
− 2009: missing] in memory indirect addressing mode
− 2010: no extension allowed here
− 2011: illegal scale factor
− 2012: can’t scale PC register
− 2013: index register expected
− 2014: too many] in memory indirect addressing mode
− 2015: missing outer displacement
− 2016: %c expected
− 2017: can’t use PC register as index
− 2018: illegal relocation
− 2019: data register required
− 2020: illegal bitfield width/offset
− 2021: constant integer expression required
− 2022: value from -64 to 63 required for k-factor
− 2023: need 32 bits to reference a program label
− 2024: option expected
− 2025: absolute value expected
− 2026: operand value out of range: %ld (valid: %ld..%ld)
− 2027: label in operand required
− 2028: using signed operand as unsigned: %ld (valid: %ld..%ld), %ld to fix
− 2029: branch destination out of range
− 2030: displacement out of range
− 2031: absolute displacement expected
− 2032: unknown option %c%c ignored

54 vasm manual

− 2033: absolute short address out of range
− 2034: 8-bit branch with zero displacement was converted to 16-bit
− 2035: illegal opcode extension
− 2036: extension for unsized instruction ignored
− 2037: immediate operand out of range
− 2038: immediate operand has illegal type or size
− 2039: data objects with %d bits size are not supported
− 2040: data out of range
− 2041: data has illegal type
− 2042: illegal combination of ColdFire addressing modes
− 2043: FP register required
− 2044: unknown cpu type
− 2045: register expected
− 2046: link.w changed to link.l
− 2047: branch out of range changed to jmp
− 2048: lea-displacement out of range, changed into move/add
− 2049: translated (A%d) into (0,A%d) for movep
− 2050: operand optimized: %s
− 2051: operand translated: %s
− 2051: instruction optimized: %s
− 2053: instruction translated: %s
− 2054: branch optimized into: b<cc>.%c
− 2055: branch translated into: b<cc>.%c
− 2056: basereg A%d already in use
− 2057: basereg A%d is already free

Chapter 14: PowerPC cpu module 55

14 PowerPC cpu module

This chapter documents the Backend for the PowerPC microprocessor family.

14.1 Legal

This module is written in 2002-2006 by Frank Wille.

This archive may be redistributed without modifications and used for non-commercial pur-
poses.

Distributing modified versions and commercial usage needs my written consent.

Certain modules may fall under additional copyrights.

14.2 Additional options for this module

This module provides the following additional options:

‘-big’ Select big-endian mode.

‘-no-regnames’
Don’t predefine any register-name symbols.

‘-little’ Select little-endian mode.

‘-mpwrx, -mpwr2’
Generate code for the POWER2 family.

‘-mpwr’ Generate code for the POWER family.

‘-m601’ Generate code for the 601.

‘-mppc, -mppc32, -m403, -m603, -m604’
Generate code for the 32-bit PowerPC family.

‘-mppc, -mppc64, -m620’
Generate code for the 64-bit PowerPC family.

‘-mavec’ Generate code for the Altivec unit.

‘-mcom’ Allow common PPC instructions.

‘-many’ Allows any PPC instruction.

‘-sdreg=<n>’
Sets small data base register to Rn.

‘-sd2reg=<n>’
Sets the 2nd small data base register to Rn.

‘-opt-branch’
Enables ’optimization’ of 16-bit branches into "B<!cc> $+8 ; B label" sequences
when necessary.

56 vasm manual

14.3 General

This backend accepts PowerPC instructions as described in the instruction set manuals
from IBM and Motorola (e.g. the PowerPC Programming Environments).
The target address type is 32bit.
Default alignment for sections and instructions is 4 bytes. Data is aligned to its natural
alignment by default.

14.4 Extensions

This backend provides the following specific extensions:

−When not disabled by the option -no-regnames, the registers r0 - r31,
f0 - f31, v0 - v31, cr0 - cr7, vrsave, sp, rtoc, fp, fpscr, xer, lr, ctr, and the
symbols lt, gt, so and un will be predefined on startup and may be referenced
by the program.

This backend extends the selected syntax module by the following directives:

.sdreg <n>
Sets the small data base register to Rn.

.sd2reg <n>
Sets the 2nd small data base register to Rn.

14.5 Optimizations

This backend performs the following optimizations:

−16-bit branches where the destination is out of range are translated
into B<!cc> $+8 and a 26-bit unconditional branch.

14.6 Known Problems

Some known problems of this module at the moment:
− None?

14.7 Error Messages

This module has the following error messages:
− 2002: instruction not supported on selected architecture
− 2003: constant integer expression required
− 2004: trailing garbage in operand
− 2005: illegal operand type
− 2006: missing closing parenthesis in load/store addressing mode
− 2007: relocation does not allow hi/lo modifier
− 2008: multiple relocation attributes
− 2009: multiple hi/lo modifiers
− 2010: data size %d not supported

Chapter 14: PowerPC cpu module 57

− 2011: illegal relocation
− 2012: relocation attribute not supported by operand
− 2013: operand out of range: %ld (allowed: %ld to %ld)
− 2014: not a valid register (0-31)
− 2015: missing base register in load/store addressing mode

58 vasm manual

Chapter 15: c16x/st10 cpu module 59

15 c16x/st10 cpu module

This chapter documents the Backend for the c16x/st10 microcontroller family.
Note that this module is not yet fully completed!

15.1 Legal

This module is copyright in 2002-2004 by Volker Barthelmann.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

15.2 Additional options for this module

This module provides the following additional options:

‘-no-translations’
Do not translate between jump instructions. If the offset of a jmpr instruction
is too large, it will not be translated to jmps but an error will be emitted.
Also, jmpa will not be optimized to jmpr.
The pseudo-instruction jmp will still be translated.

‘-jmpa’ A jmp or jmpr instruction that is translated due to its offset being larger than
8 bits will be translated to a jmpa rather than a jmps, if possible.

15.3 General

This backend accepts c16x/st10 instructions as described in the Infineon instruction set
manuals.
The target address type is 32bit.
Default alignment for sections and instructions is 2 bytes.

15.4 Extensions

This backend provides the following specific extensions:

− There is a pseudo instruction jmp that will be translated either to a jmpr or
jmpa instruction, depending on the offset.

− The sfr pseudo opcode can be used to declare special function registers. It
has two, three of four arguments. The first argument is the identifier to be
declared as special function register. The second argument is either the 16bit
sfr address or its 8bit base address (0xfe for normal sfrs and 0xf0 for extended
special function registers). In the latter case, the third argument is the 8bit sfr
number. If another argument is given, it specifies the bit-number in the sfr (i.e.
the declaration declares a single bit).
Example:

.sfr zeros,0xfe,0x8e

60 vasm manual

− SEG and SOF can be used to obtain the segment or segment offset of a full
address. Example:

mov r3,#SEG farfunc

15.5 Optimizations

This backend performs the following optimizations:

− jmp is translated to jmpr, if possible. Also, if ‘-no-translations’ was not
specified, jmpr and jmpa are translated.

− Relative jump instructions with an offset that does not fit into 8 bits are trans-
lated to a jmps instruction or an inverted jump around a jmps instruction.

− For instruction that have two forms gpr,#IMM3/4 and reg,#IMM16 the smaller
form is used, if possible.

15.6 Known Problems

Some known problems of this module at the moment:
− Lots...

15.7 Error Messages

This module has the following error messages:
FIXME

Chapter 16: 6502 cpu module 61

16 6502 cpu module

This chapter documents the backend for the MOS/Rockwell 6502 microprocessor family.

16.1 Legal

This module is copyright in 2002,2006,2008,2009 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

16.2 Additional options for this module

This module provides the following additional options:

‘-opt-branch’
Enables ’optimization’ of B<cc> branches into "B<!cc> *+3 ; JMP label" se-
quences when necessary.

‘-illegal’
Allow ’illegal’ 6502 instructions to be recognized.

‘-dtv’ Recognize the three additional C64-DTV instructions.

16.3 General

This backend accepts 6502 family instructions as described in the instruction set reference
manuals from MOS and Rockwell, which are valid for the following CPUs: 6502, 65C02,
65CE02, 65C102, 65C112, 6503, 6504, 6505, 6507, 6508, 6509, 6510, 6511, 65F11, 6512 -
6518, 65C00/21, 65C29, 6570, 6571, 6280, 6702, 740, 7501, 8500, 8502, 65802, 65816.
The target address type is 16 bit.
Instructions consist of one up to three bytes and require no alignment. There is also no
alignment requirement for sections and data.
All known mnemonics for illegal instructions are recognized (e.g. dcm and dcp refer to the
same instruction). Some illegal insructions (e.g. $ab) are known to show unpredictable
behaviour, or do not always work the same on different CPUs.

16.4 Extensions

This backend provides the following specific extensions:
− The parser understands a lo/hi-modifier to select low- or high-byte of a 16-bit word.

The character < is used to select the low-byte and > for the high-byte. It has to be the
first character before an expression.

16.5 Optimizations

This backend performs the following operand optimizations:
− Branches where the destination is out of range are translated into B<!cc> *+3 and an

absolute JMP instruction.

62 vasm manual

16.6 Known Problems

Some known problems of this module at the moment:
− None?

16.7 Error Messages

This module has the following error messages:
− 2001: instruction not supported on selected architecture
− 2002: trailing garbage in operand
− 2003: missing closing parenthesis in addressing mode
− 2004: data size %d not supported
− 2005: relocation does not allow hi/lo modifier
− 2006: operand doesn’t fit into 8-bits
− 2007: branch destination out of range
− 2008: illegal relocation

Chapter 17: ARM cpu module 63

17 ARM cpu module

This chapter documents the backend for the Advanced RISC Machine (ARM) microproces-
sor family.

17.1 Legal

This module is copyright in 2004,2006 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

17.2 Additional options for this module

This module provides the following additional options:

‘-m2’ Generate code for the ARM2 CPU.

‘-m250’ Generate code for the ARM250 CPU.

‘-m3’ Generate code for the ARM3 CPU.

‘-m6’ Generate code for the ARM6 CPU.

‘-m600’ Generate code for the ARM600 CPU.

‘-m610’ Generate code for the ARM610 CPU.

‘-m7’ Generate code for the ARM7 CPU.

‘-m710’ Generate code for the ARM710 CPU.

‘-m7500’ Generate code for the ARM7500 CPU.

‘-m7d’ Generate code for the ARM7d CPU.

‘-m7di’ Generate code for the ARM7di CPU.

‘-m7dm’ Generate code for the ARM7dm CPU.

‘-m7dmi’ Generate code for the ARM7dmi CPU.

‘-m7tdmi’ Generate code for the ARM7tdmi CPU.

‘-m8’ Generate code for the ARM8 CPU.

‘-m810’ Generate code for the ARM810 CPU.

‘-m9’ Generate code for the ARM9 CPU.

‘-m9’ Generate code for the ARM9 CPU.

‘-m920’ Generate code for the ARM920 CPU.

‘-m920t’ Generate code for the ARM920t CPU.

‘-m9tdmi’ Generate code for the ARM9tdmi CPU.

64 vasm manual

‘-msa1’ Generate code for the SA1 CPU.

‘-mstrongarm’
Generate code for the STRONGARM CPU.

‘-mstrongarm110’
Generate code for the STRONGARM110 CPU.

‘-mstrongarm1100’
Generate code for the STRONGARM1100 CPU.

‘-a2’ Generate code compatible with ARM V2 architecture.

‘-a3’ Generate code compatible with ARM V3 architecture.

‘-a3m’ Generate code compatible with ARM V3m architecture.

‘-a4’ Generate code compatible with ARM V4 architecture.

‘-a4t’ Generate code compatible with ARM V4t architecture.

‘-little’ Output little-endian code and data (default).

‘-big’ Output big-endian code and data.

‘-thumb’ Start assembling in Thumb mode.

‘-opt-ldrpc’
The maximum range in which PC-relative symbols can be accessed through
LDR and STR is extended from +/-4KB to +/-1MB (or +/-256 Bytes to +/-65536
Bytes when accessing half-words). This is done by automatically inserting an
additional ADD or SUB instruction before the LDR/STR.

‘-opt-adr’
The ADR directive will be automatically converted into ADRL if required (which
inserts an additional ADD/SUB to calculate an address).

17.3 General

This backend accepts ARM instructions as described in various ARM CPU data sheets. Ad-
ditionally some architectures support a second, more dense, instruction set, called THUMB.
There are special directives to switch between those two instruction sets.

The target address type is 32bit.

Default alignment for instructions is 4 bytes for ARM and 2 bytes for THUMB. Sections
will be aligned to 4 bytes by default. Data is aligned to its natural alignment by default.

17.4 Extensions

This backend extends the selected syntax module by the following directives:

.arm Generate 32-bit ARM code.

.thumb Generate 16-bit THUMB code.

Chapter 17: ARM cpu module 65

17.5 Optimizations

This backend performs the following optimizations and translations for the ARM instruction
set:
− LDR/STR Rd,symbol, with a distance between symbol and PC larger than 4KB, is

translated to ADD/SUB Rd,PC,#offset&0xff000 + LDR/STR Rd,[Rd,#offset&0xfff],
when allowed by the option -opt-ldrpc.

− ADR Rd,symbol is translated to ADD/SUB Rd,PC,#rotated_offset8.
− ADRL Rd,symbol is translated to ADD/SUB Rd,PC,#hi_rotated8 + ADD/SUB

Rd,Rd,#lo_rotated8. ADR will be automatically treated as ADRL when required and
when allowed by the option -opt-adr.

− The immediate operand of ALU-instructions will be translated into the appropriate
8-bit-rotated value. When rotation alone doesn’t succeed the backed will try it with
inverted and negated values (inverting/negating the ALU-instruction too).

For the THUMB instruction set the following optimizations and translations are done:
− A conditional branch with a branch-destination being out of range is translated into

B<!cc> .+4 + B label.
− The BL instruction is translated into two sub-instructions combining the high- and low

22 bit of the branch displacement.

17.6 Known Problems

Some known problems of this module at the moment:
− Only instruction sets up to ARM architecture V4t are supported.

17.7 Error Messages

This module has the following error messages:
− 2001: instruction not supported on selected architecture
− 2002: trailing garbage in operand
− 2003: label from current section required
− 2004: branch offset (%ld) is out of range
− 2005: PC-relative load/store (offset %ld) out of range
− 2006: cannot make rotated immediate from PC-relative offset (0x%lx)
− 2007: constant integer expression required
− 2008: constant (0x%lx) not suitable for 8-bit rotated immediate
− 2009: branch to an unaligned address (offset %ld)
− 2010: not a valid ARM register
− 2011: PC (r15) not allowed in this mode
− 2012: PC (r15) not allowed for offset register Rm
− 2013: PC (r15) not allowed with write-back
− 2014: register r%ld was used multiple times
− 2015: illegal immediate shift count (%ld)

66 vasm manual

− 2016: not a valid shift register
− 2017: 24-bit unsigned immediate expected
− 2018: data size %d not supported
− 2019: illegal addressing mode: %s
− 2020: signed/halfword ldr/str doesn’t support shifts
− 2021: %d-bit immediate offset out of range (%ld)
− 2022: post-indexed addressing mode exptected
− 2023: operation not allowed on external symbols
− 2024: ldc/stc offset has to be a multiple of 4
− 2025: illegal coprocessor operation mode or type: %ld\n
− 2026: %d-bit unsigned immediate offset out of range (%ld)
− 2027: offset has to be a multiple of %d
− 2028: instruction at unaligned address

Chapter 18: 80x86 cpu module 67

18 80x86 cpu module

This chapter documents the Backend for the 80x86 microprocessor family.

18.1 Legal

This module is written in 2005-2006 by Frank Wille.
This archive may be redistributed without modifications and used for non-commercial pur-
poses.
Distributing modified versions and commercial usage needs my written consent.
Certain modules may fall under additional copyrights.

18.2 Additional options for this module

This module provides the following additional options:

‘-m8086’ Generate code for the 8086 CPU.

‘-mi186’ Generate code for the 80186 CPU.

‘-mi286’ Generate code for the 80286 CPU.

‘-mi386’ Generate code for the 80386 CPU.

‘-mi486’ Generate code for the 80486 CPU.

‘-mi586’ Generate code for the Pentium.

‘-mi686’ Generate code for the PentiumPro.

‘-mpentium’
Generate code for the Pentium.

‘-mpentiumpro’
Generate code for the PentiumPro.

‘-mk6’ Generate code for the AMD K6.

‘-mathlon’
Generate code for the AMD Athlon.

‘-msledgehammer’
Generate code for the Sledgehammer CPU.

‘-debug=<n>’
Enables debugging output.

18.3 General

This backend accepts 80x86 instructions as described in the Intel Architecture Software
Developer’s Manual.
The target address type is 32bit.
Default alignment for sections is 4 bytes. Instructions do not need any alignment. Data is
aligned to its natural alignment by default.
The backend uses MIT-syntax! This means the left operands are always the source and
the right operand is the destination. Also register names have to be prefixed by a ’%’.
Operation size is indicated by a ’b’, ’w’, ’l’, etc. suffix behind the mnemonic.

68 vasm manual

18.4 Extensions

Predefined register symbols in this backend:

−8-bit registers: al cl dl bl ah ch dh bh axl cxl dxl spl bpl sil dil r8b r9b r10b
r11b r12b r13b r14b r15b
−16-bit registers: ax cx dx bx sp bp si di r8w r9w r10w r11w r12w r13w r14w r15w
−32-bit registers: eax ecx edx ebx esp ebp esi edi r8d r9d r10d r11d r12d r13d r14d
r15d
−64-bit registers: rax rcx rdx rbx rsp ebp rsi rdi r8 r9 r10 r11 r12 r13 r14 r15
−segment registers: es cs ss ds fs gs
−control registers: cr0 cr1 cr2 cr3 cr4 cr5 cr6 cr7 cr8 cr9 cr10 cr11 cr12 cr13 cr14
cr15
−debug registers: dr0 dr1 dr2 dr3 dr4 dr5 dr6 dr7 dr8 dr9 dr10 dr11 dr12 dr13 dr14
dr15
−test registers: tr0 tr1 tr2 tr3 tr4 tr5 tr6 tr7
−MMX and SIMD registers: mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7 xmm0 xmm1 xmm2 xmm3
xmm4 xmm5 xmm6 xmm7 xmm8 xmm9 xmm10 xmm11 xmm12 xmm13 xmm14 xmm15
−FPU registers: st st(0) st(1) st(2) st(3) st(4) st(5) st(6) st(7)

This backend extends the selected syntax module by the following directives:

.code16 Sets the assembler into 16-bit addressing mode.

.code32 Sets the assembler into 32-bit addressing mode, which is the default.

18.5 Optimizations

This backend performs the following optimizations:

−Immediate operands are optimized to the smallest size which can
still represent the absolute value.

−Displacement operands are optimized to the smallest size which
can still represent the absolute value.

−Jump instructions are optimized to 8-bit displacements, when possible.

18.6 Known Problems

Some known problems of this module at the moment:
− 64-bit operations are disabled at the moment.

18.7 Error Messages

This module has the following error messages:
− 2001: instruction not supported on selected architecture
− 2002: trailing garbage in operand
− 2003: same type of prefix used twice
− 2004: immediate operand illegal with absolute jump
− 2005: base register expected
− 2006: scale factor without index register

Chapter 18: 80x86 cpu module 69

− 2007: missing ’)’ in baseindex addressing mode
− 2008: redundant %s prefix ignored
− 2009: unknown register specified
− 2010: using register %%%s instead of %%%s due to ’%c’ suffix
− 2011: %%%s not allowed with ’%c’ suffix
− 2012: illegal suffix ’%c’
− 2013: instruction has no suffix and no register operands - size is unknown
− 2014: illegal relocation
− 2015: memory operand expected
− 2016: you cannot pop %%%s
− 2017: translating to %s %%%s,%%%s
− 2018: translating to %s %%%s
− 2019: absolute scale factor required
− 2020: illegal scale factor (valid: 1,2,4,8)
− 2021: data objects with %d bits size are not supported
− 2022: need at least %d bits for a relocatable symbol
− 2023: pc-relative jump destination out of range (%lld)
− 2024: instruction doesn’t support these operand sizes
− 2025: cannot determine immediate operand size without a suffix
− 2026: displacement doesn’t fit into %d bits

70 vasm manual

Chapter 19: z80 cpu module 71

19 z80 cpu module

This chapter documents the backend for the 8080/z80/gbz80/64180/RCMx000 micropro-
cessor family.

19.1 Legal

This module is copyright in 2009 by Dominic Morris

19.2 Additional options for this module

This module provides the following additional options:

‘-swapixiy’
Swaps the usage of ix and iy registers. This is useful for compiling generic code
that uses an index register that is reserved on the target machine.

‘-8080’ Turns on 8080 compatibility mode. Any use of z80 (or higher) opcodes will
result in an error being generated.

‘-hd64180’
Turns on 64180 mode supporting additional 64180 opcodes.

‘-gbz80’ Turns on gbz80 compatibility mode. Any use of non-supported opcodes will
result in an error being generated.

‘-rcm2000’
‘-rcm3000’
‘-rcm4000’

Turns on Rabbit compatibility mode, generating the correct codes for moved
opcodes and supporting the additional Rabbit instructions. In this mode, 8 bit
access to the 16 bit index registers is not permitted.

‘-rcmemu’ Turns on emulation of some instructions which aren’t available on the Rabbit
processors.

‘-z80asm’ Switches on z80asm mode, this translates ASMPC to $ and accepts some pseudo
opcodes that z80asm supports. Most emulation of z80asm directives is provided
by the oldsyntax syntax module.

19.3 General

This backend accepts z80 family instructions in standard Zilog syntax. Rabbit opcodes are
accepted as defined in the publically available reference material from Rabbit Semiconduc-
tor, with the exception that the ljp and lcall opcodes need to be supplied with a 24 bit
number rather than an 8 bit xpc and a 16 bit address.
The target address type is 16 bit.
Instructions consist of one up to six bytes and require no alignment. There is also no
alignment requirement for sections and data.

19.4 Extensions

Certain Rabbit opcodes can be prefixed by the altd and/or the ioi/ioe modifier. For details
of which instructions these are valid for please see the documentation from Rabbit.

72 vasm manual

19.5 Optimisations

This backend supports the emulation of certain z80 instructions on the Rabbit/gbz80 pro-
cessor. These instructions are rld, rrd, cpi, cpir, cpd and cpdr. The link stage should provide
routines with the opcode name prefixed with rcmx (eg rcmx rld) which implements the
same functionality. Example implementations are available within the z88dk CVS tree.
Additionally, for the Rabbit targets the missing call cc, opcodes will be emulated.

19.6 Known Problems

Some known problems of this module at the moment:
− Not all RCM4000 opcodes are supported (llcall, lljp are not available).

19.7 Error Messages

This module has the following error messages:
− 2001: index offset out of bounds (%d)
− 2002: Opcode not supported by %s (%s)
− 2003: Index registers not available on 8080
− 2004: out of range for 8 bit expression (%d)
− 2005: invalid bit number (%d) should be in range 0..7
− 2006: rst value out of range (%d/0x%02x)
− 2007: %s value out of range (%d)
− 2008: index offset should be a constant
− 2009: invalid branch type for jr
− 2010: Rabbit target doesn’t support rst %d
− 2011: Rabbit target doesn’t support 8 bit index registers
− 2012: z180 target doesn’t support 8 bit index registers
− 2013: invalid branch type for jre
− 2014: Opcode not supported by %s (%s) but it can be emulated (-rcmemu)
− 2015: %s specifier is only valid for Rabbit processors
− 2016: Only one of ioi and ioe can be specified at a time
− 2017: %s specifier is not valid for the opcode %s
− 2018: %s specifier redundant for the opcode %s
− 2019: %s specifier has no effect on the opcode %s
− 2020: Operand value must evaluate to a constant for opcode %s

Chapter 20: Interface 73

20 Interface

20.1 Introduction

This chapter is under construction!
This chapter describes some of the internals of vasm and tries to explain what has to be
done to write a cpu module, a syntax module or an output module for vasm. However if
someone wants to write one, I suggest to contact me first, so that it can be integrated into
the source tree.
Note that this documentation may mention explicit values when introducing symbolic con-
stants. This is due to copying and pasting from the source code. These values may not be
up to date and in some cases can be overridden. Therefore do never use the absolute values
but rather the symbolic representations.

20.2 Building vasm

This section deals with the steps necessary to build the typical vasm executable from the
sources.

20.2.1 Directory Structure

The vasm-directory contains the following important files and directories:

‘vasm/’ The main directory containing the assembler sources.

‘vasm/Makefile’
The Makefile used to build vasm.

‘vasm/syntax/<syntax-module>/’
Directories for the syntax modules.

‘vasm/cpus/<cpu-module>/’
Directories for the cpu modules.

‘vasm/obj/’
Directory the object modules will be stored in.

All compiling is done from the main directory and the executables will be placed there
as well. The main assembler for a combination of <cpu> and <syntax> will be called
vasm<cpu>_<syntax>. All output modules are usually integrated in every executable and
can be selected at runtime.

20.2.2 Adapting the Makefile

Before building anything you have to insert correct values for your compiler and operating
system in the ‘Makefile’.

TARGET Here you may define an extension which is appended to the executable’s name.
Useful, if you build various targets in the same directory.

TARGETEXTENSION
Defines the file name extension for executable files. Not needed for most oper-
ating systems. For Windows it would be ‘.exe’.

74 vasm manual

CC Here you have to insert a command that invokes an ANSI C compiler you want
to use to build vasm. It must support the ‘-I’ option the same like e.g. vc or
gcc.

COPTS Here you will usually define an option like ‘-c’ to instruct the compiler to
generate an object file. Additional options, like the optimization level, should
also be inserted here as well. E.g. if you are compiling for the Amiga with vbcc
you should add ‘-DAMIGA’.

CCOUT Here you define the option which is used to specify the name of an output file,
which is usually ‘-o’.

LD Here you insert a command which starts the linker. This may be the the same
as under CC.

LDFLAGS Here you have to add options which are necessary for linking. E.g. some
compilers need special libraries for floating-point.

LDOUT Here you define the option which is used by the linker to specify the output file
name.

RM Specify a command to delete a file, e.g. rm -f.

An example for the Amiga using vbcc would be:
TARGET = _os3
TARGETEXTENSION =
CC = vc +aos68k
CCOUT = -o
COPTS = -c -c99 -cpu=68020 -DAMIGA -O1
LD = $(CC)
LDOUT = $(CCOUT)
LDFLAGS = -lmieee
RM = delete force quiet

An example for a typical Unix-installation would be:
TARGET =
TARGETEXTENSION =
CC = gcc
CCOUT = -o
COPTS = -c -O2
LD = $(CC)
LDOUT = $(CCOUT)
LDFLAGS = -lm
RM = rm -f

Open/Net/Free/Any BSD i386 systems will probably require the following an additional
‘-D_ANSI_SOURCE’ in COPTS.

20.2.3 Building vasm

Note to users of Open/Free/Any BSD i386 systems: You will probably have to use GNU
make instead of BSD make, i.e. in the following examples replace "make" with "gmake".
Type:

Chapter 20: Interface 75

make CPU=<cpu> SYNTAX=<syntax>

For example:

make CPU=ppc SYNTAX=std

For Windows and various Amiga targets there are already Makefiles included, which you
may either copy on top of the default ‘Makefile’, or call it explicitely with make’s ‘-f’
option:

make -f Makefile.OS4 CPU=ppc SYNTAX=std

20.3 General data structures

This section describes the fundamental data structures used in vasm which are usually
necessary to understand for writing any kind of module (cpu, syntax or output). More
detailed information is given in the respective sections on writing specific modules where
necessary.

20.3.1 Source

A source structure represents a source text module, which can be either the main source
text, an included file or a macro. There is always a link to the parent source from where
the current source context was included or called.

struct source *parent;
Pointer to the parent source context. Assembly continues there when the cur-
rent source context ends.

int parent_line;
Line number in the parent source context, from where we were called. This
information is needed, because line numbers are only reliable during parsing
and later from the atoms. But an include directive doesn’t create an atom.

char *name;
File name of the main source or include file, or macro name.

char *text;
Pointer to the source text start.

size_t size;
Size of the source text to assemble in bytes.

unsigned long repeat;
Number of repetitions of this source text. Usually this is 1, but for text blocks
between a rept and endr directive, it allows any number of repetitions, which
is decremented everytime the end of this source text block is reached.

int cond_level;
Current level of conditional nesting while calling this macro. The level is pro-
vided by the syntax module through execute_macro(). The syntax module
may use this information to restore the last valid level when exiting a macro in
the middle.

76 vasm manual

int num_params;
Number of macro parameters passed at the invocation point from the parent
source. For normal source files this entry will be -1. For macros 0 (no parame-
ters) or higher.

char *param[MAXMACPARAMS];
Pointer to the macro parameters. Parameter 0 is usually reserved for a special
purpose, like an extension.

int param_len[MAXMACPARAMS];
Number of characters per macro parameter.

unsigned long id;
Every source has its unique id. Useful for macros supporting the special \@
parameter.

char *srcptr;
The current source text pointer, pointing to the beginning of the next line to
assemble.

int line; Line number in the current source context. After parsing the line number of
the current atom is stored here.

char *linebuf;
A MAXLINELENGTH buffer for the current line being assembled in this source
text. A child-source, like a macro, can refer to arguments from this buffer, so
every source has got its own. When returning to the parent source, the linebuf
is deallocated to save memory.

20.3.2 Sections

One of the top level structures is linked list of sections describing continuous blocks of
memory. A section is specified by an object of type section with the following members
that can be accessed by the modules:

struct section *next;
A pointer to the next section in the list.

char *name;
The name of the section.

char *attr;
A string describing the section flags in ELF notation (see, for example, docu-
mentation o the .section directive of the standard syntax mopdule.

atom *first;
atom *last;

Pointers to the first and last atom of the section. See following sections for
information on atoms.

int align;
Alignment of the section in bytes.

int flags;
Flags of the section. Currently available flags are:

Chapter 20: Interface 77

HAS_SYMBOLS
At least one symbol is defined in this section.

taddr org;
Start address of a section. Usually zero.

taddr pc; Current offset/program counter in this section. Can be used while traversing
through section. Has to be updated by a module using it. Is set to org at the
beginning.

size_t idx;
A member usable by the output module for private purposes.

20.3.3 Symbols

Symbols are represented by a linked list of type symbol with the following members that
can be accessed by the modules:.

int type; Type of the symbol. Available are:

#define LABSYM 1
The symbol is a label defined at a specific location.

#define IMPORT 2
The symbol is imported from another file.

#define EXPRESSION 3
The symbol is defined using an expressing.

int flags;
Flags of this symbol. Available are:

#define TYPE_UNKNOWN 0
The symbol has no type information.

#define TYPE_OBJECT 1
The symbol defines an object.

#define TYPE_FUNCTION 2
The symbol defines a function.

#define TYPE_SECTION 3
The symbl defines a section.

#define TYPE_FILE 4
The symbol defines a file.

#define EXPORT (1<<3)
The symbol is exported to other files.

#define INEVAL (1<<4)
Used internally.

#define COMMON (1<<5)
The symbol is a common symbol.

78 vasm manual

#define WEAK (1<<6)
The symbol is weak, which means the linker may overwrite it with
any global definition of the same name. Weak symbols may also
stay undefined, in which case the linker would assign them a value
of zero.

#define RSRVD_S (1L<<24)
The range from bit 24 to 27 (counted from the LSB) is reserved for
use by the syntax module.

#define RSRVD_O (1L<<28)
The range from bit 28 to 31 (counted from the LSB) is reserved for
use by the output module.

The type-flags can be extracted using the TYPE() macro which expects a pointer
to a symbol as argument.

char *name;
The name of the symbol.

expr *expr;
The expression in case of EXPRESSION symbols.

expr *size;
The size of the symbol, if specified.

section *sec;
The section a LABSYM symbol is defined in.

taddr pc; The offset of a LABSYM symbol in bytes relative to the beginning of the section.

taddr align;
The alignment of the symbol in bytes.

size_t idx;
A member usable by the output module for private purposes.

20.3.4 Atoms

The contents of each section are a linked list built out of non-separable atoms. The general
structure of an atom is:

typedef struct atom {
struct atom *next;
int type;
int align;
source *src;
int line;
listing *list;
union {
instruction *inst;
dblock *db;
symbol *label;
sblock *sb;

Chapter 20: Interface 79

defblock *defb;
void *opts;
int srcline;

} content;
} atom;

The members have the following meaning:

struct atom *next;
Pointer to the following atom (0 if last).

int type; The type of the atom. Can be one of

#define LABEL 1
A label is defined here.

#define DATA 2
Some data bytes of fixed length and constant data are put here.

#define INSTRUCTION 3
Generally refers to a machine instruction or pseudo/opcode. These
atoms can change length during optimization passes and will be
translated to DATA-atoms later.

#define SPACE 4
Defines a block of data filled with one value (byte). BSS sections
usually contain only such atoms, but they are also sometimes useful
as shorter versions of DATA-atoms in other sections.

#define DATADEF 5
Defines data of fixed size which can contain cpu specific operands
and expressions. Will be translated to DATA-atoms later.

#define LINE 6
A source text line number (usually from a high level language) is
bound to the atom’s address. Useful for source level debugging in
certain ABIs.

#define OPTS 7
A means to change assembler options at a specific source text line.
For example optimization settings, or the cpu type to generate code
for. The cpu module has to define HAVE_CPU_OPTS and export the
required functions if it wants to use this type of atom.

int align;
The alignment of this atom.

source *src;
Pointer to the source text object to which this atom belongs.

int line; The source line number that created this atom.

listing *list;
Pointer to the listing object to which this atoms belong.

80 vasm manual

instruction *inst;
(In union content.) Pointer to an instruction structure in the case of an
INSTRUCTION-atom. Contains the following elements:

int code; The cpu specific code of this instruction.

char *qualifiers[MAX_QUALIFIERS];
(If MAX_QUALIFIERS!=0.) Pointer to the qualifiers of this instruc-
tion.

operand *op[MAX_OPERANDS];
(If MAX_OPERANDS!=0.) The cpu-specific operands of this instruc-
tion.

instruction_ext ext;
(If the cpu module defines HAVE_INSTRUCTION_EXTENSION.) A cpu-
module-specific structure. Typically used to store appropriate op-
codes, allowed addressing modes, supported cpu derivates etc.

dblock *db;
(In union content.) Pointer to a dblock structure in the case of a DATA-atom.
Contains the following elements:

taddr size;
The number of bytes stored in this atom.

char *data;
A pointer to the data.

rlist *relocs;
A pointer to relocation information for the data.

symbol *label;
(In union content.) Pointer to a symbol structure in the case of a LABEL-atom.

sblock *sb;
(In union content.) Pointer to a sblock structure in the case of a SPACE-atom.
Contains the following elements:

taddr space;
The size of the empty/filled space in bytes.

expr *space_exp;
The above size as an expression, which will be evaluated during
assembly and copied to space in the final pass.

int size; The size of each space-element and of the fill-pattern in bytes.

unsigned char fill[MAXBYTES];
The fill pattern, up to MAXBYTES bytes.

defblock *defb;
(In union content.) Pointer to a defblock structure in the case of a DATADEF-
atom. Contains the following elements:

taddr bitsize;
The size of the definition in bits.

Chapter 20: Interface 81

operand *op;
Pointer to a cpu-specific operand structure.

void *opts;
(In union content.) Points to a cpu module specific options object in the case
of a OPTS-atom.

int srcline;
(In union content.) Line number for source level debugging in the case of a
LINE-atom.

20.3.5 Relocations

DATA-atoms can have a relocations list attached that describes how this data must be mod-
ified when linking/relocating. They always refer to the data in this atom only.
There are a number of predefined standard relocations and it is possible to add other cpu-
specific relocations. Note however, that it is always preferrable to use standard relocations,
if possible. Chances that an output module supports a certain relocation are much higher
if it is a standard relocation.
A relocation list uses this structure:

typedef struct rlist {
struct rlist *next;
void *reloc;
int type;

} rlist;

Type identifies the relocation type. All the standard relocations have type numbers between
FIRST_STANDARD_RELOC and LAST_STANDARD_RELOC. Consider ‘reloc.h’ to see which stan-
dard relocations are available.
The detailed information can be accessed via the pointer reloc. It will point to a structure
that depends on the relocation type, so a module must only use it if it knows the relocation
type.
All standard relocations point to a type nreloc with the following members:

int offset;
The offset (from the start of the DATA-atom in bits.

int size; The size of the relocation in bits.

taddr mask;
A mask value.

taddr addend;
Value to be added to the symbol value.

symbol *sym;
The symbol referred by this relocation

To describe the meaning of these entries, we will define the steps that shall be performed
when performing a relocation:
1. Extract the <size> bits from the data atom, starting with bit number <offset>. <offset>

zero means to start from the first bit.

82 vasm manual

2. Determine the relocation value of the symbol. For a simple absolute relocation, this
will be the value of the symbol <sym> plus the <addend>. For other relocation types,
more complex calculations will be needed. For example, in a program-counter relative
relocation, the value will be obtained by subtracting the address of the data atom
(possibly offset by a target specific value) from the value of <sym> plus <addend>.

3. Calculate the bit-wise "and" of the value obtained in the step above and the <mask>
value.

4. Shift the value above right as many bit positions as there are low order zero bits in
<mask>.

5. Add this value to the value extracted in step 1.

6. Insert the low order <size> bits of this value into the data atom starting with bit
<offset>.

20.3.6 Errors

Each module can provide a list of possible error messages contained e.g. in
‘syntax_errors.h’ or ‘cpu_errors.h’. They are a comma-separated list of a printf-format
string and error flags. Allowed flags are WARNING, ERROR, FATAL and NOLINE. They can
be combined using or (|). NOLINE has to be set for error messages during initialiation or
while writing the output, when no source text is available. Errors cause the assembler to
return false. FATAL causes the assembler to terminate immediately.

The errors can be emitted using the function syntax_error(int n,...), cpu_error(int
n,...) or output_error(int n,...). The first argument is the number of the error mes-
sage (starting from zero). Additional arguments must be passed according to the format
string of the corresponding error message.

20.4 Syntax modules

A new syntax module must have its own subdirectory under ‘vasm/syntax’. At least the
files ‘syntax.h’, ‘syntax.c’ and ‘syntax_errors.h’ must be written.

20.4.1 The file ‘syntax.h’

#define ISIDSTART(x)/ISIDCHAR(x)
These macros should return non-zero if and only if the argument is a valid
character to start and identifier/inside an identifier respectively. ISIDCHAR
must be a superset of ISIDSTART.

#define NARGSYM "NARG"
Defines the name of an optional symbol which contains the number of arguments
in a macro.

#define EXPSKIP() s=exp_skip(s)
Defines an optional replacement for skip() to be used in expr.c, to skip blanks
in an expression. Useful to forbid blanks in an expression and to ignore the rest
of the line (e.g. to treat the rest as comment).

Chapter 20: Interface 83

#define IGNORE_FIRST_EXTRA_OP 1
Should be defined when the syntax module wants to ignore the operand field on
instructions without an operand. Useful, when everything following an operand
should be regarded as comment, without a comment character.

20.4.2 The file ‘syntax.c’

A syntax module has to provide the following elements (all other funtions should be static
to prevent name clashes):

char *syntax_copyright;
A string that will be emitted as part of the copyright message.

char commentchar;
A character used to introduce a comment until the end of the line.

char *defsectname;
Name of a default section which vasm creates when a label or code occurs in
the source, but the programmer forgot to specify a section. Assigning NULL
means that there is no default and vasm will show an error in this case.

char *defsecttype;
Type of the default section (see above). May be NULL.

int init_syntax();
Will be called during startup. Must return zero if initializations failed, non-zero
otherwise.

int syntax_args(char *);
This function will be called with the command line arguments (unless they were
already recognized by other modules). If an argument was recognized, return
non-zero.

char *skip(char *);
A function to skip whitespace etc.

char *skip_operand(char *);
A function to skip an instruction’s operand. Will terminate at end of line or
the next comma, returning a pointer to the rest of the line behind the comma.

void eol(char *);
This function should check that the argument points to the end of a line (only
comments or whitespace following). If not, an error or warning message should
be omitted.

char *const_prefix(char *,int *);
Check if the first argument points to the start of a constant. If yes return a
pointer to the real start of the number (i.e. skip a prefix that may indicate the
base) and write the base of the number through the pointer passed as second
argument. Return zero if it does not point to a number.

void parse(void);
This is the main parsing function. It has to read lines via the read_next_
line() function, parse them and create sections, atoms and symbols. Pseudo
directives are usually handled by the syntax module.

84 vasm manual

char *get_local_label(char **);
Gets a pointer to the current source pointer. Has to check if a valid local label
is found at this point. If yes return a pointer to the vasm-internal symbol name
representing the local label and update the current source pointer to point
behind the label.
Have a look at the support functions provided by the frontend to help.

20.5 CPU modules

A new cpu module must have its own subdirectory under ‘vasm/cpus’. At least the files
‘cpu.h’, ‘cpu.c’ and ‘cpu_errors.h’ must be written.

20.5.1 The file ‘cpu.h’

A cpu module has to provide the following elements (all other functions should be static
to prevent name clashes) in cpu.h:

#define MAX_OPERANDS 3
Maximum number of operands of one instruction.

#define CPU_CHECKS_OPCNT 0
When non-zero, parse_operand() is called with an arbitrary number of
operands, and it is the task of the cpu module to check it.

#define MAX_QUALIFIERS 0
Maximum number of mnemonic-qualifiers per mnemonic.

typedef long taddr;
Data type to represent a target-address. Preferrably use the ones from
‘stdint.h’.

#define LITTLEENDIAN 1
#define BIGENDIAN 0

Define these according to the target endianess. For CPUs which support big-
and little-endian, you may assign a global variable here. So be aware of it, and
never use #if BIGENDIAN, but always if(BIGENDIAN) in your code.

#define VASM_CPU_<cpu> 1
Insert the cpu specifier.

#define INST_ALIGN 2
Minimum instruction alignment.

#define SECTION_ALIGN 2
Default section alignment.

#define DATA_ALIGN(n) ...
Default alignment for n-bit data. Can also be a function.

#define DATA_OPERAND(n) ...
Operand class for n-bit data definitions. Can also be a function. Negative
values denote a floating point data definition of -n bits.

typedef ... operand;
Structure to store an operand.

Chapter 20: Interface 85

typedef ... mnemonic_extension;
Mnemonic extension.

Optional features, which can be enabled by defining the following macros:

#define HAVE_INSTRUCTION_EXTENSION 1
If cpu-specific data should be added to all instruction atoms.

typedef ... instruction_ext;
Type for the above extension.

NEED_CLEARED_OPERANDS
Backend requires a zeroed operand structure when calling parse_operand()
for the first time. Defaults to undefined.

START_PARENTH(x)
Valid opening parenthesis for instruction operands. Defaults to ’(’.

END_PARENTH(x)
Valid closing parenthesis for instruction operands. Defaults to ’)’.

Implementing additional target-specific unary operations is done by defining the following
optional macros:

EXT_UNARY_NAME(s)
Should return True when the string in s points to an operation name we want
to handle.

EXT_UNARY_TYPE(s)
Returns the operation type code for the string in s. Note that the last valid
standard operation is defined as LAST_EXP_TYPE, so the target-specific types
will start with LAST_EXP_TYPE+1.

EXT_UNARY_EVAL(t,v,r,c)
Defines a function with the arguments (int t, taddr v, taddr *r, int c) to
handle the operation type t returning an int to indicate whether this type has
been handled or not. Your operation will by applied on the value v and the
result is stored in *r. The flag c is passed as 1 when the value is constant (no
relocatable addresses involved).

EXT_FIND_BASE(e,s,p)
Defines a function with the arguments (expr *e, section *s, taddr p) to re-
turn a pointer to the base symbol of expression e. The type in e->type has to
checked to be one of the operations to handle. The section pointer s and the
current pc p are needed to call the standard find_base() function.

20.5.2 The file ‘cpu.c’

A cpu module has to provide the following elements (all other functions should be static
to prevent name clashes) in cpu.c:

int bitsperbyte;
The number of bits per byte of the target cpu.

int bytespertaddr;
The number of bytes per taddr.

86 vasm manual

char *cpu_copyright;
A string that will be emitted as part of the copyright message.

char *cpuname;
A string describing the target cpu.

int init_cpu();
Will be called during startup. Must return zero if initializations failed, non-zero
otherwise.

int cpu_args(char *);
This function will be called with the command line arguments (unless they were
already recognized by other modules). If an argument was recognized, return
non-zero.

char *parse_cpu_special(char *);
This function will be called with a source line as argument and allows the cpu
module to handle cpu-specific directives etc. Functions like eol() and skip()
should be used by the syntax module to keep the syntax consistent.

operand *new_operand();
Allocate and initialize a new operand structure.

void free_operand(operand *);
Free an operand.

int parse_operand(char *text,int len,operand *out,int requires);
Parses the source at text with length len to fill the target specific operand
structure pointed to by out. Returns PO_MATCH when the operand matches the
operand-type passed in requires and PO_NOMATCH otherwise. When the source
is definitely identified as garbage, the function may return PO_CORRUPT to tell
the assembler that it is useless to try matching against any other operand types.

mnemonic mnemonics[];
The mnemonic table is usually defined in ‘opcodes.h’ and keeps a list of
mnemonic names and operand types the assembler with match against using
parse_operand(). It may also include a target specific mnemonic_extension.

taddr instruction_size(instruction *ip, section *sec, taddr pc);
Returns the size of the instruction ip in bytes, which must be identical to the
number of bytes written by eval_instruction() (see below).

dblock *eval_instruction(instruction *ip, section *sec, taddr pc);
Converts the instruction ip into a DATA atom, including relocations, if neces-
sary.

dblock *eval_data(operand *op, taddr bitsize, section *sec, taddr pc);
Converts a data operand into a DATA atom, including relocations.

void init_instruction_ext(instruction_ext *);
(If HAVE_INSTRUCTION_EXTENSION is set.) Initialize an instruction extension.

char *parse_instruction(char *,int *,char **,int *,int *);
(If MAX_QUALIFIERS is greater than 0.) Parses instruction and saves extension
locations.

Chapter 20: Interface 87

int set_default_qualifiers(char **,int *);
(If MAX_QUALIFIERS is greater than 0.) Saves pointers and lengths of default
qualifiers for the selected CPU and returns the number of default qualifiers.
Example: for a M680x0 CPU this would be a single qualifier, called "w". Used
by execute_macro().

cpu_opts_init(section *);
(If HAVE_CPU_OPTS is set.) Gives the cpu module the chance to write out OPTS
atoms with initial settings before the first atom is generated.

cpu_opts(void *);
(If HAVE_CPU_OPTS is set.) Apply option modifications from an OPTS atom. For
example: change cpu type or optimization flags.

print_cpu_opts(FILE *,void *);
(If HAVE_CPU_OPTS is set.) Called from print_atom() to print an OPTS atom’s
contents.

20.6 Output modules

Output modules can be chosen at runtime rather than compile time. Therefore, several
output modules are linked into one vasm executable and their structure differs somewhat
from syntax and cpu modules.
Usually, an output module for some object format fmt should be contained in a file
‘output_fmt.c’ (it may use/include other files if necessary). To automatically include this
format in the build process, the ‘make.rules’ has to be extended. The module should be
added to the OBJS variable at the start of ‘make.rules’. Also, a dependency line should
be added (see the existing output modules).
An output module must only export a single function which will return pointers to necessary
data/functions. This function should have the following prototype:

int init_output_<fmt>(
char **copyright,
void (**write_object)(FILE *,section *,symbol *),
int (**output_args)(char *)

);

In case of an error, zero must be returned. Otherwise, It should perform all necessary
initializations, return non-zero and return the following output parameters via the pointers
passed as arguments:

copyright
A pointer to the copyright string.

write_object
A pointer to a function emitting the output. It will be called after the assembler
has completed and will receive pointers to the output file, to the first section
of the section list and to the first symbol in the symbol list. See the section on
general data structures for further details.

output_args
A pointer to a function checking arguments. It will be called with all command
line arguments (unless already handled by other modules). If the output module

88 vasm manual

recognizes an appropriate option, it has to handle it and return non-zero. If it
is not an option relevant to this output module, zero must be returned.

At last, a call to the output_init_<fmt> has to be added in the init_output() function
in ‘vasm.c’ (should be self-explanatory).
Some remarks:

− Some output modules can not handle all supported CPUs. Nevertheless, they
have to be written in a way that they can be compiled. If code references CPU-
specifics, they have to be enclosed in #ifdef VASM_CPU_MYCPU ... #endif or
similar.
Also, if the selected CPU is not supported, the init function should fail.

− Error/warning messages can be emitted with the output_error function. As all
output modules are linked together, they have a common list of error messages
in the file ‘output_errors.h’. If a new message is needed, this file has to be
extended (see the section on general data structures for details).

− vasm has a mechanism to specify rather complex relocations in a standard
way (see the section on general data structures). They can be extended with
CPU specific relocations, but usually CPU modules will try to create standard
relocations (sometimes several standard relocations can be used to implement
a CPU specific relocation). An output module should try to find appropriate
relocations supported by the object format. The goal is to avoid special CPU
specific relocations as much as possible.

Volker Barthelmann vb@compilers.de

	General
	Introduction
	Legal
	Installation

	The Assembler
	General Assembler Options
	Expressions
	Include Files
	Macros
	Conditional Assembly
	Known Problems
	Credits
	Error Messages

	Standard Syntax Module
	Legal
	Additional options for this version
	General Syntax
	Directives
	Known Problems
	Error Messages

	Mot Syntax Module
	Legal
	Additional options for this version
	General Syntax
	Directives
	Known Problems
	Error Messages

	Oldstyle Syntax Module
	Legal
	Additional options for this version
	General Syntax
	Directives
	Known Problems
	Error Messages

	Simple binary output module
	Legal
	Additional options for this version
	General
	Known Problems
	Error Messages

	Test output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	ELF output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	a.out output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	TOS output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	vobj output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	Amiga output module
	Legal
	Additional options for this version
	General
	Restrictions
	Known Problems
	Error Messages

	m68k cpu module
	Legal
	Additional options for this module
	CPU selections
	Optimization options
	Other options

	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	PowerPC cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	c16x/st10 cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	6502 cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	ARM cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	80x86 cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimizations
	Known Problems
	Error Messages

	z80 cpu module
	Legal
	Additional options for this module
	General
	Extensions
	Optimisations
	Known Problems
	Error Messages

	Interface
	Introduction
	Building vasm
	Directory Structure
	Adapting the Makefile
	Building vasm

	General data structures
	Source
	Sections
	Symbols
	Atoms
	Relocations
	Errors

	Syntax modules
	The file syntax.h
	The file syntax.c

	CPU modules
	The file cpu.h
	The file cpu.c

	Output modules

